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RELATIONS INDUCED BY CELLULAR  AUTOMATA

TAKEO YAKU

Abstract. Moore and Myhill showed that Garden-of-Eden theorem [2],

[3]. A binary relation over the configurations is said to be "parallel" if it is

induced by a cellular (tessellation) automaton. Richardson showed the

equivalence between a parallel relation (a nondeterministic parallel map)

with the quiescent state to be injective and its inverse to be parallel by the

Garden-of-Eden theorem plus compactness of product topology [4]. This

paper deals with the inverse and the injectivity when a cellular automaton is

given that induces a parallel relation. We give an equivalent condition,

concerning only the local map, for the inverse of a parallel relation to be

parallel. Furthermore we show an equivalent condition, concerning only the

local map, for the injectivity of a parallel map. Consequently, we note that

these two conditions are represented by semirecursive predicates.

1. Introduction. A cellular automaton-also known as a tessellation struc-

ture-is a model of an array of uniformly connected identical finite automata

arranged in a ¿/-dimensional Euclidean space divided into square cells, where

d is called the dimension. The cellular automaton is denoted by M = (V, Zd, X,

f), where (i) V is the state set of each finite automaton, (ii) Z denoted the

integers, (iii) A' is a distinct «-tuple (xx,x2,... ,xn) from Zd, called the

neighbourhood index, where « is a positive integer. We will always assume that

xx = 0 (0 denotes the p-tuple of 0's). X denotes the locations of the finite

automata which are connected to each finite automaton, (iv) f C V" x V is

the state function of each finite automaton called the local relation. We often

represent a binary relation R C X X Y by a nondeterministic mapping of a

subset of X to 2Y. A totally defined or a deterministic relation denotes a totally

defined or a deterministic mapping, respectively.

A configuration is a mapping Zd —> V, which is an assignment of states into

the array. Now, the parallel relation R (over the configurations) induced by M

is defined as follows: For configurations c and d,

(c,d) E R <=>/(c(/ + xx),c(i + x2), ...,£•(/ + x„)) 3 d(i) V/ G Zd.

A binary relation over the configurations is said to be parallel if it is induced

by some cellular automaton. A parallel relation R is called a parallel map if R

is deterministic, that is, the local relation is deterministic.
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A cellular automaton M = (V, Zd, X,f) is with the quiscent state if there is

a state vq in V such thatf(vq,..., vq) = {vq). The parallel relation F induced

by M is with the quiescent state if M is with the quiescent state, i.e., cqRd iff

d' ' = c for the quiescent configuration cq. A configuration c is with finite

support provided that the set {/' G Z; c(i ) ¥= vq) is finite.

X(i) denotes the set {(/' + xx),(i + x2),...,(/ + x„)} and X(A) denotes

U¡e/XX(i). A pattern is a restriction of a configuration to a finite set. The

parallel relation R over the patterns is defined by: For patterns p and

q, (p,q) G Rp iff dorn, p = A(dom q) and

(0 /(/>(< + xx),p(i + x2),... ,p(i + x„)) 3 q(i) V¡ G dorn q.

Garden-of-Eden Theorem (Moore [2] and Myhill [3]). A totally defined

parallel map R with the quiescent state is surjective if and only if R is injective

restricted to configurations with finite support.

Richardson combined the theorem above and compactness of product

topology [4], and gave the following theorem.

Theorem A (Richardson [4]). A totally defined parallel map R with the

quiescent state is injective if and only if the inverse of R is a totally defined parallel

map with the quiescent state.

2. Results.

Definition. Let Rp be a parallel relation over the patterns induced by

M = (V,Zd,XJ). With respect to a finite set A (0 G A) in Zd, Rp is said to

be A-independent if for any patterns p, p' and q such that dorn q = A, pRpq,

andp'Rpq,rRq for the pattern r such that dorn r = dorn p, r(0)

= p'(0) and r(i) = p(i) for i ¥= 0.

A set A is said to be sufficiently large with respect to X if X(i) n A(0)

= 0 or X(i) D (Zd - X(A)) = 0 for any i in Zd.

Lemma 1. Let F_1 be the inverse of a totally defined parallel relation R induced

by M = (V,Zd,X,f). If R~x is a parallel relation induced by M' = (V,Zd, Y,
g), then Rp is A-independent for some sufficiently large finite set A in Zd.

Proof. Let A be a sufficiently large finite set in Zd such that F(0)

Ç A and 0 G A. Since F_1 is parallel, for patterns/?, p' and q, if dorn q — A,

pRpq and p' Rpq, then/>(0) and//(0) are in

g(q(0 + yx),q(0 + y2), ...,q(0+ yn,)),

where Y = (yx,y2,... ,y„'). Since/is totally defined, then there are patterns

qx and q\ such that (i) Y(X(A)) = dorn qx = dorn q\, (ii) <?,(/') = q\(i)

= q(i) for i in A, and (iii) qx(R~l)pp and q'x(R~l)pp', where (R~x)p is the

parallel relation over the patterns induced by M'. Thus from (1), qx (F-1 )\ r for

the pattern r such that dorn r = dom/i, r(0) = p'(Q) and r(i) = p(i) for i

¥= 0, since 7(0) G A. Accordingly, rRpq, and therefore Rp is /I-independent.

Q.E.D.
In order to prove the converse of Lemma 1, we will show in advance the

following
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Lemma 2. Let us suppose that R is the parallel relation induced by M

= (V, Zd,X,f). Let A be a finite set in Zd which is sufficiently large with respect

to X, and A' be such as A' 3 A. If Rp is A-independent, then Rp is A'-

independent.

Proof. For any patterns /rj,p2andc7' such that dorn q' = A',

if p\ Rpq' und p'2Rpq', thenp, Rpq and p2Rpq for patternspx, p2 and q such as

Pi £ P\'P2 — Pi' <7 - a'> ^om q = A and dorn px = dorn p2 = X(A). Ac-

cordingly rRpq for the pattern r such that dorn r = dornp, r(0)

= p2(0) and r(i) = px(i) for /' # 0. Let r' be a pattern such as (i) dorn r'

= X(A'), (ii) r'(0) = p'2(0), and (iii) r'(i) = p\(i) for i * 0.

We will prove that r'Rpq'. Let r" be the restriction of r' to X(i). For ;' such

that_r(/) B 0, we obtain r"Rpq'(i) (q'(i) = q(i)), since r"(i) = r(i) for i

E X(i), R is /l-independent and A is sufficiently large. For /' such as

X(i) 3 0, it is obvious thatp'[ Rpq'(i), wherep"x is the restriction of p\ to X(i).

Q.E.D.

The next theorem does not only show that the inverse of a parallel relation

is parallel when R is ^-independent, but also shows that we can explicitly give

a cellular automaton that induces the inverse, using a cellular automaton

defined below.

Let us suppose that A = [ax,a2,... ,am) (ax = 0) is a finite set in Zd and

that M = (V,Zd,X,f) is a cellular automaton with X = (xx,x2,... ,x„). Let

(Rp)~ be the inverse of the parallel relation Rp over the patterns induced by

M. Let Y = (yx,y2,... ,y„') be such that

(2) *(A) Q , H    7(x,)

and that ri is finite. Now, M(A) = (V, Zd, Y,g) denotes a cellular automaton

defined as:

(3) g(vx,v2,...,vn) 3 v,

if there are patterns p and q such that pRpq, p(0) = v andp(.y,) = v¡ for any

i (1 < i < n') where domp = X(Y(0)) and dorn q = 7(0).

Theorem 1. Let R be a parallel relation induced by M = (V,Zd,X,f) with

the inverse R~x. Let A be a sufficiently large finite set in Zd with respect to X. If

the parallel relation Rp over the patterns is A-independent, then a cellular

automaton M (A) defined in (3) induces R~x.

Proof. Let A be such that A = [ax,a2,... ,am). We can assume that

ax = 0. Assume that M(A) = (V,Zd, Y,g), Y = (yx,y2,... ,y¿) and S is the
parallel relation induced by M (A).

We will prove that dR~x c if and only if dSc for configurations c and d. Let

us assume that dR~xc. Letp be the restriction of c to X(Y(i)) and q be the

restriction of d to Y(i) with respect to any ; in Zd. Clearly pRpq. Hence

P(i) £ g(q(i + y\ X q(i + yi\ ..-,q(i+ y„>)) from (3). Thus dSc.
On the other hand, let us assume that dSc. We must prove that d(i)

E f(c(i + xx),c(i + x2),... ,c(i + xn)) for any i in Zd, where X = (xx,

x2,... ,xn). Fix i E Zd.
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From (3) there are patterns px,p2, ..., pn for each 1 < j < « such that

Í dorn pj = X(Y(i + xj)),

I Pj(i + Xj)  =  C(i + Xj),

[ PjRPaJ'

where X = (x,,x2,... ,x„) and qj is the restriction of d to Y(i + Xj). Let

9/0 ^ J ^ n) De sucn that q'j = qx (1 q2 (~) ■ ■ ■ H qj, where mappings qx,

q2, ..., qj are considered as sets.

Let rx, r2, ...,/"„ be the patterns as defined below:

(1 "A.

J dorn ç+1 = dorn /;• n dorn Pj+X,

I rJ+x(x) = r¡(x) (x =t i + xj+x),

= Pj+\(x)        (x = i + xj+x),

where 1 < j < «. It is clear that /j Rpq\. We will prove that if tjRpq'j, then

rj+xRpq'j+x for y (1 < 7 < «).
Assume that rjRpq'j. Let /-j+1 be the restriction of /; to dorn ç + 1. We have

r}+\^paj+i' while ^ is sufficiently large and {i + xj+x + ax,i + xj+x

+ a2,... ,i + Xj+X + am) G dorn rj+x from (2). Thus, from Lemma 2,

Ç+1 Rpq'j+\ ■ Accordingly, rnRpq'n. Since ¿70(0 = d(i), the proof is completed.

Q.E.D.

Theorem 2. F«e inverse of a totally defined parallel relation R induced by

M = (V,Zd,X,f) is parallel if and only if the parallel relation Rp over the

patterns is A-independent for some sufficiently large finite set A with respect to X.

The next theorem deals with the injectivity of a parallel map. From

Theorems A and 2

Theorem 3. A totally defined parallel map R with the quiescent state induced

by M = (V, Z , X,f) is injective if and only if
(i) the parallel map Rp over the patterns is A-independent for some sufficiently

large finite set A with respect to X, and

(ii) the inverse R~l is totally defined and with the quiescent state.

We note that condition (i) in Theorem 3 is represented by a semirecursive

predicate. While, R~x in Theorem 3 is induced by M(A) defined in (3), if F

is ^-independent. Then:

Remark. The following are represented by semirecursive predicates:

(i) The inverse of the totally defined parallel relation induced by a given

cellular automaton is parallel.

(ii) The totally defined parallel map with the quiescent state induced by a

given cellular automaton is injective.
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