
PROCEEDINGS OK THE

AMERICAN MATHEMATICAL SOCIETY

Volume 58, luly 1976

REMARKS ON THE CLASSICAL BANACH
OPERATOR IDEALS

J. DIESTEL AND B. FAIRES

Abstract.    Sufficient conditions are given that the X-tensor product of two

operators be weakly compact.

Suppose W, X, Y, Z denote Banach spaces and W ®XX denotes the

topological tensor product of W and X under the least reasonable tensor cross-

norm X.UT:W-*Y and S: X -* Z ave continuous linear operators then a

continuous linear operator W ®x X —> Y ®^ Z is induced which may or may

not share certain special properties enjoyed by F and S. The present note is

concerned with the classical Banach operator ideal of weakly compact

operators. While the A-tensor product of weakly compact linear operators

need not be weakly compact, if either of the operators in question is compact

(Theorem 2) or if one of the operator's domains is a C(K)- or an Lx(p:)-space

then the A-tensor product of weakly compact operators is again a weakly

compact operator (Theorem 4).

In proving that the A-tensor product of a weakly compact operator and a

compact operator is again weakly compact no real use is made of weak

compactness; indeed, Theorem 2 shows that for any classical injective Banach

operator ideal an analogous statement holds.

A basic tool used in the proof of Theorem 4 is a recent, as yet unpublished

result of W. J. Davis, T. Figiel, W. B. Johnson, and A. Pelczynski which states

that every weakly compact linear operator between Banach spaces factors

through a reflexive Banach space. We wish to thank Professors Davis, Figiel,

Johnson, and Pelczynski for communicating their result. We also wish to

thank Professor D. R. Lewis for conversations which led to the present proof

of Theorem 4; this proof avoids the use of the representation theory of weakly

compact operators on C(K)- and L, (/¿/spaces which we originally employed in

proving Corollary 5.

Let / denote a classical Banach operator ideal; i.e., for each pair of Banach

spaces X, Y, I(X; Y) is a closed subspace of L(X; Y) in the uniform norm

topology containing the finite rank operators F(X; Y) from X to Y and

possessing the ideal property that if W, Z are Banach spaces and F: W —> X,

R: Y -> Z are bounded linear operators and 5 G I(X; Y), then RST: W ^> Z

is a member of I(W; Z). The reader is referred to [12] for a rather complete

discussion of Banach operator ideals-classical and otherwise.

Among the classical examples of such structures one finds the classes of
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compact operators [1], weakly compact operators [1], strictly singular opera-

tors ([9], [10]), strictly cosingular operators ([7], [10]), completely continuous

operators (TE L(X; Y) is said to be completely continuous if F maps weakly

convergent sequences into norm convergent sequences), Dunford-Pettis oper-

ators (weakly compact completely continuous operators), weak Cauchy oper-

ators (F G L(X; Y) is said to be weak Cauchy whenever given a bounded

sequence (xn) E X, (Txn) has a weak Cauchy subsequence), and the uncon-

ditionally converging operators [8].

We say that a classical Banach operator ideal / is injective [12] whenever

given any bounded linear operator T: X —> Y and any Z 3 Y (isomorphical-

ly) then F G I(X; Y) ii and only if F G I(X; Z). Among the aforementioned

examples for /, all but the strictly cosingular operator ideal are examples of

injective classical Banach operator ideals.

That the strictly cosingular operator ideal is not injective is seen by

considering any isomorphism F of c0 into C[0,1]. Clearly, such a F is not

strictly cosingular, since Tc0 is, by Sobczyck's theorem [7], complemented in

C[0,1]. Hence, the natural choices of y, \p allow one to complete the diagram

c0-—    —C[0, 1]

T=*

Tc0

with m, \p both linear, continuous, onto maps. We now embed C[0,1] into

Lx[0,1]. But every operator S: c0 -* /.^[0,1] is strictly cosingular. In fact, if E

is any Banach space for which there exist epimorphisms tp: c0 —» E, uV:

A»[0> 1] "~* E> then as a quotient of c0, E is separable. However, by one of

Grothendieck's theorems ([2, pp. 169-170]) separable quotients of L^[0,1] are

reflexive. Thus £ is a reflexive quotient of c0, i.e., <p is weakly compact; but

weakly compact linear operators on c0 are compact. Thus E is a compact

quotient of c0, i.e., dim E < oo.

Remark. Using the results of [11] and [13] one can show that if tix is a

dispersed compact HausdorfT space and £22 is an F-space then every simulta-

neous Banach space quotient of C(S2,) and C(S22) is finite dimensional. Hence

every F: C(flj) -> C(ß2) or F: C(S22) -» C(Slx) is strictly cosingular. Whether

or not this is so for any fi2 such that C(S22) is a Grothendieck space is not

known.

Theorem 1. Let I be a classical Banach operator ideal. Denote, for any pair of

Banach spaces X, Y, by ^(X; Y) the class of all bounded, linear operators

T: X -» Y such that if Xx, Yx are Banach spaces and S E I(XX ; Yx ) then

T ®A S1 E I(X ®A A'i ; Y ®A Yx) (here X denotes the least reasonable norm of [4]).

Then // is a classical Banach operator ideal contained in I.

Proof. Let F, S E J¡X(X; Y) and suppose R: Xx -> Yx is in I(XX ; Yx). Then

T®XR, S ®XR are in I(X ®x Xx ; Y ®A Yx) so
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(T + S) ®x R = (F ®A F) + (5 ®A F)

is also in I(X ®A A', ; Y ®A Yx) which yields T+ S G JjX(X; Y).

Now let W, Z be Banach spaces and let T G L(W,X), S G J,X(X, Y) and

F G L(T, Z). Suppose U: Xx -> If is a member of /(A, ; ^ ). Then the diagram

F5r ®v Í/
W ®A AT, -> z ^ rx

7^ id.
F ® id.

A"®,*, T®77r*r^

commutes showing that FST ®A U is in /( If ®A A, ; Z ®A >i ) and hence

RST G JHW;Z).
Thus J]  is an ideal.

We next show that Jx contains all the finite dimensional continuous

operators. Indeed, let F: X -* Y be a one dimensional linear continuous

operator between the Banach spaces X, Y. Then F is of the form Tx = f(x)y

for some / G A" and y G Y. Now, if A,, Yx are Banach spaces and S

G I(XX;YX),   the  following  diagram   commutes:

X

T®XS
^Y®KY1

y»

- Y,

where  W/(2?=i x¡ ® *,(1)) = 2,"=i /(*,)4°  and .^(.y1) = >> ® V.   Thus   F

®A S G /(A ®A Aj ; F ®A If) and hence F G //(A; Y). Linearity of // yields
the containment of all the finite rank continuous operators in //.

Finally, the inequalities

||F®AS-F,®AS|| = \\(T - T„) ®x S\\ < ||F-F„||-||5||

show that JX(X; Y) is a closed subspace of L(X; Y) hence is a classical

Banach operator ideal.

That J]   G I follows from the commutativity of the diagram

X®xS     F®,idS

-> Y

-> Y®XS

(S = scalars)

where ls(x) = x ® 1 and 7¡i (2?= 17» ® r,) = 2,"=i &V/.
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Our next result contains as a very special case a theorem of J. R. Holub [6]

in the case where / is the compact operator ideal.

Theorem 2. Suppose that I is an injective classical Banach operator ideal. Then

J^(X; Y)  is an  injective classical Banach operator ideal;  consequently, J¡

contains the compact operator ideal.

Proof. The first assertion follows from the fact that X is an injective

tensorial norm, i.e., if Y E Z and X is given then X ®A Y Q X ®A Z and

Y ®A X E Z ®A X. This combined with the injectivity of / yields the easy

proof of the injectivity of Jf .

The second assertion is a consequence of the following fact: every injective

classical Banach operator ideal contains the compact operator ideal. Indeed,

by the definition of operator ideal every ideal / contains the class of finite rank

operators. If / is injective and X, Y are Banach spaces then Y is isometrically

isomorphic to a subspace of some space C(Í2) of continuous real valued

functions on a compact HausdorfT space Q. So, given F: X -* Y compact,

F: X -* C(Í2) is compact and hence the limit of finite rank operators (since by

[3, pp. 180-186], C(Q) possesses the metric approximation property). There-

fore, F G I(X; C(ß)). By injectivity of /, F G I(X; Y).

Corollary 3. The X-tensor product of a compact operator with a

(i) (weakly) compact operator is (weakly) compact;

(ii) strictly singular operator is strictly singular;

(iii) unconditionally converging operator is unconditionally converging;

(iv) completely continuous operator is completely continuous;

(v) Dunford-Pettis operator is a Dunford-Pettis operator;

(vi) weak Cauchy operator is a weak Cauchy operator.

Examples, (i) The A-tensor product of weakly compact operators need hot

be weakly compact; indeed, the identity operator id: l2 -* l2 is weakly

compact yet

id ®A id = id,l9x¡2: l2 ®x l2 -» l2 ®A l2

is not weakly compact by the well-known nonreflexivity of l2 ®A l2.

(ii) The A-tensor product of strictly singular operators need not be strictly

singular; similarly, the A-tensor product of unconditionally converging (strictly

cosingular). The same example suffices in each case, namely, let i denote the

canonical inclusion of l2 into c0. Then /' ®A i: l2 ®A l2 -* c0 ®A c0 fixes the

diagonal e¡ ® ej (ej denotes the y'th unit vector) and hence is an isomorphism

of the closed linear span of {e ® e.■.: j = 1,2,...} in l2 ®A l2 with the closed

linear span of {e¡ ® ey j = 1,2,...} in c0 ®A c0. In each case, by Theorem 5.5

of [5], this space is a complemented subspace isomorphic to c0. The assertions

about i ®A ; now follow from the fact that (': l2 —* c0 is a strictly singular,

strictly cosingular, unconditionally converging operator; while clearly i ®A /':

h ®A h ~* co ®\ co is none of these.

Theorem 4. Let W be a Banach space whose dual space possesses the

approximation property and the Dunford-Pettis property. Let T: W —» Y and



CLASSICAL BANACH OPERATOR IDEALS 193

S: X —» Z be weakly compact linear operators.  Then T ®A S: W ®A X —* Y

®A Z is a weakly compact linear operator.

Proof. We start by noting a consequence of the factorization result of

Davis-Figiel-Johnson-Pelczyñski; we may assume X = Z is reflexive and S is

the identity on X. Indeed, if F is a reflexive Banach space such that for some

A G L(X; R) and B G L(R;Z) the diagram

F

commutes, then the diagram

T®XS
W ®A X->Y ®A Z

idy ®A B

W^R   F®AidR     )Y^R

also commutes. Hence the weak compactness of F ®A idÄ implies that of

F®x 5.
So we are reduced to the question of tensoring a weakly compact operator

on a space W whose dual possesses the approximation and Dunford-Pettis

properties with the (weakly compact) identity operator on a reflexive Banach

space to yield (relative to the A cross-norm) a weakly compact operator.

Suppose we consider any Banach space U whose dual possesses the

approximation property and any reflexive Banach space V. Then the dual of

(U ®A V) is precisely the space of integral bilinear functionals (By(U, V) in

the notation of [4]) on U X V. Identifying By(U, V) with a space of operators

we have (U ®A V)' = integral operators from U to V. By the Dunford-Pettis-

Phillips theorem ([3, p. 134]), every integral operator into the reflexive space

V is nuclear; by the approximation assumption on If, the nuclear operators

from U to V coincide with U' ®y V. Thus under the above assumptions on

U and V we have

(£/®A V)' = (£/'®Y V).

Of course, by the universal mapping principle for y we have (V ®Y V')'

identifiable with L(U'; V") = L(U'; V).
Now let F, S, W, X, Y, Z be as in the statement of the theorem. By the

injectivity of the weakly compact operator ideal in order to show F ®A S:

W ®A X —* Y ®A Z is weakly compact it suffices to show F ®A S is weakly

compact into any super space of Y ®A Z. In particular, embedding if

necessary Y into a C(Í2) space isometrically and using the injectivity of the A

idw ®\ A
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cross-norm we may and do assume that Y and all of its duals possess the

(metric) approximation property.

Thus in light of the above paragraphs, we are in the following situation: W

and F both possess the approximation property and W also possesses the

Dunford-Pettis property. T: W —> Y is weakly compact and R is a reflexive

Banach space. We wish to show that

F®AidÄ: W ®x R -» K®A R

is weakly compact, i.e., that ([1, VI, 4.2])

(T®xiàR)"(L(W';R)) Ç  Y®XR

where by the third paragraph we have L(W; R) = (W ®A R)" and L(Y'; R)
= (Y®XR)".

The action of (F ®A id*)" on <p E L(W; R) is readily checked to be given

by

(T®A id*)» = <p-F' EL(Y';R).

To show that <p • T' E Y ®A R we must show (by the approximation consid-

erations for Y) that <p • T' is a weak-star to weak, continuous compact linear

operator from Y' to R. Weak star-weak continuity is immediate from F' ' s

weak star-weak continuity (VI, 4.7 of [1]) and the weak continuity of <p (V, 3.15

of [1]). The compactness of <p ■ T' follows from the fact that 7": Y' -* W is

weakly compact (VI, 4.18 of [1]) hence T (Yns unit ball) is relatively weakly

compact in W which, since W possesses the Dunford-Pettis property and

<p: W —> R is necessarily weakly compact (and therefore maps relatively

weakly compact subsets of W into norm compact subsets of R), yields <p ■ F'

(Y' unit ball) relatively compact in R.

Corollary 5. // W is either a C(K)-space (K a compact Hausdorff space) or

an Lx(¡x)-space then T ®\S: W ®A X —> Y ®A Z is weakly compact whenever T,

S are.

We thank the referee and Professor T. H. E. Skulker for providing the

following lemma and example in answer to our questions in the original

version of the paper.

Lemma. Suppose T: X —> Y is onto and T'Y' is complemented in X'. Then

T ®A T: X ®XX -+ Y ®A y is onto.

Proof. We prove that T ®A Fis onto by showing that (T ®x F)': Ly(Y, Y')

-» Ly(X,A") is an isomorphism, where Ly(X,A") denotes the integral opera-

tors from X into A". Let P: A" -» T'Y' be a projection and recall that for

S G Ly(Y, Y'), (T ®A T)'(S) = T'ST. Since for 5 G Ly(Y, Y'), both SFand
T'ST are integral operators, we have the following diagram:
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■*Fi

X^Y-^Y'—^X'

T'Y'

which shows that

(0 \\ST\\ = \\PT'ST\ < ||F|| • \\T'ST%.

The dual diagram

L„<- ^¿i

Y"      s,     » Y'-fr-

T'Y'

yields that

(2) ISIL = HS'IL = WPT'S'L < IIFII \T'S% = \\ST\\

Thus if (F ®A T)'S = T'ST = 0 we have by (1) and (2) that 5 = 0.
Using this result we give an example to show that the A-tensor product of

Dunford-Pettis type operators is not an operator of Dunford-Pettis type.

Let X = (2„ /£)/ and F: X -> /2 be the map defined by Te" = e¡, where

(«,-)?-1 is the unit vector basis for l2 and (*?,-) is the unit vector basis for l2. To

show that F is onto and T'l2 is norm one complemented in X', we show that

F admits local selections and use Stegall's local selection lemma ([14, Lemma

1]). If G is any finite dimensional Banach space and S: G —> l2, letting

fx,f2, ... ,f„ (dim G = n) denote an orthonormal basis of SG, [(jT})jL|] lS

isometrically isomorphic to l2 . Letting 5 = S with/ = e¡, T admits a local

selection with A = 1. It is clear that X has the Dunford-Pettis property and F

is weakly compact. F ®A F: X ®A X —> l2 ®A l2 is onto (by previous lemma)

and hence not weakly compact by the nonreflexivity of l2 ®A l2.
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