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INITIAL AND UNIVERSAL METRIC SPACES

W. HOLSZTYÑSKI1

Abstract. Local capacity is introduced (the usual notion of the capacity is

global). It is proven (see Theorem 1) that some classes of metric spaces,

naturally defined in terms of local capacity, contain a space which can be

mapped onto any other member of its class without any stretching. Such a

theorem would fail if local capacity is replaced by the usual notion of

(global) capacity.

Using Theorem 1 and simple properties of Met (X, Y) (see §2) it follows

immediately that for every class of compact metric spaces with uniformly

bounded diameters and capacities there exists a compact space which

contains an isometric image of any space from the class (in general this

universal space cannot be found within the class).

Introduction. Today it is well known that the global notions of metric

capacity are useful in the theory of approximation, functional analysis and

some other branches of mathematics (geometry of numbers, topology, ... ).

Capacity of a metric space A can be defined as a function e -* Se(X), e > 0,

where Se(X) is the smallest cardinal number of a cover of A with the subsets

of diameter < e. In this paper a local notion of metric capacity is introduced.

There are some reasons to expect that such local notions should be very often

even more convenient than global ones. The goal of this paper is purely metric.

In §1 we prove that every class of complete metric spaces with uniformly

bounded diameters and local capacity contains a member which can be

mapped onto any other one without increasing any distance (see Theorem 1

below). The following simple example shows that such a theorem would be

false for global capacity. Let A = {xx, x2, x3, x4) with metric d(xx ,x¡) = 2 for

/ = 2, 3, 4 and d(x¡,Xj) = 1 for2 < / < / < 4, and Y = {y\,y2,y^,y^) with

metric d(yx,y2) = d(y3,y4) = 1 and d(y¡,yj) = 2 for i = 1 or 2 and / = 3

or 4. Both A and Y can be covered by two sets of diameter < 1 and by four

sets of diameter <j. But if a metric space Z is a union of two subsets of

diameter < 1 and if Z can be mapped metrically (i.e., without increasing

distances) onto A and Y, then Z cannot be covered by four subsets of diameter

<J.
In §2 we apply Theorem 1 to prove a kind of dual theorem on universal

metric spaces (we use a contravariant functor Met from the category of metric

spaces into itself).

1. A mapping/: A —* Y (X, Y being metric spaces) such that
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d(f(x),f(y)) <d(x,y)    for x, y G X

is called a metric mapping.

Let M be a class of metric spaces. Then a relation >, defined by A > F iff

there exists a metric map onto /: A —> Y, is a partial quasi-ordering of A/. If

M consists only of compact spaces then > is a partial ordering up to isometry

(i.e. from A > F and Y > A it follows that X and F are isometric), see [1].

Definition 1. Space A is an initial space of M iff A > F for every F G A/.

We shall show that for some naturally distinguished classes there exist initial

spaces, but we will begin with some simple propositions.

Proposition 1. If X > F then card A > card F a«t/ diam A > diam F.

Proposition 2. If a class M has an initial space then there exists a cardinal

number m such that card A < m for every X G M.

Proposition 3. If M is the class consisting of all spaces X with card A < m

and diam A < a then the space D(m, a) with card D(m, a) = m and with metric

given by

Í0   for x = y,
x,y G D(m,a),

a   for x # y,

is an initial space of M.

Proposition 4. If M contains only bounded spaces with arbitrarily great

diameters then M does not possess any initial space.

Now let N(X,k) be the least cardinal number such that for every subset A

of X with diam A < 2k there exists a covering C of A, consisting of subsets

with diameters < 2k~x, such that cardC < N(X,k). Now let M(mk: k

= 0, ±1,... ) be the class of all complete metric spaces A such that A (A, k)

< mk for every integer k.

Remark. If N(X,k) = 1 for all integers k > n + 1 («-an integer) then

diam A < 2".
The purpose of this note is the following theorem (compare [2]).

Theorem 1. Let (mk : k = 0, ±1,... ) be a sequence of cardinal numbers such

that mk = 1 for k > « + 1, where « is an integer. Then class M = M(mk: k

= 0, ± 1,... ) has an initial space. For example, cartesian product

D = fi D(mk,2k)
-oc

(see Proposition 3), with metric

d(x,y) = max(d(xk,yk): k = 0,±1,...)

(for every x = (xk)k=r¡±x       and y = (yic)k=o,±\,.     G D) is an initial space of

M.

Proof. We have to show that D > A for every A G M. Let Ck(A) be a

covering of A consisting of closed subsets of diameters < 2k~x and with
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card Ck(A) < mk, for every A E M with diamyl < 2k. We can assume

Ck(A) = {^JforÂ: > n + 1.
Now let A E M be a fixed space. For k > n + 1 we let

FKxk: D(mk,2k) ^ (X) = Ck(X)

be the unique function that exists and we define

Fkxk: D(mk,2k) -* Ck(Fk+Xxk+i(xk + x)),

as an arbitrary mapping onto, for every integer k and x = (xk,xk+x,

xk+2>---) e IÏ,->À:£>K,2')andx*+1 = (xk+i,xM, • • •)■
Thus we have recursively defined a sequence of functions ■■•,F_Xx-\,

F0xo, Flxu ... such that Fkxk(xk) D Fk_x xk-X(xk_x) for every k and x È D.

Let X*) be the unique point of the intersection ^f=-(XFk xk(xk). We shall

show that the function /: D —> X defined in such a way is a metric mapping.

Indeed, let x, y E D and let k be the maximal integer such that xk =£ yk.

Then k < n and d(x,y) = 2k. On the other hand F(;c, = F, , for /' > k.

Hence

f(x),f(y) E Fk+lxk+i(xk+l) = Fk + Xyk+X(yk + X)

and

d(f(x),f(y)) < diam^ + u*+1(x¿+1) < 2k = d(x,y).

Thus / is a metric mapping. Now we shall show that / is onto A.

Indeed, let p E X. We let xk be the unique element of D(mk,2k) for

k > n + 1 and let it be an arbitrary element of D(mk,2k) such that p

S ^ **(**:) for every k < «. Thus we have a recursive definition of a point

* = (xk)k=o,±\,...  e 0 sucn that/(x) = p.

It remains to prove DEM. Let A E D and diam^f < 2*. Then for every

x = (x,),=0+1 _ , y = (^,-)/,o,±l,... G A we have xi = y ifor i > A: + 1, i.e.
x*+1 = yk+x~. Hence there exists ak+x = (ak+x,ak+2,...) such that xk+x

= ak+x for every x E A. We can put

Aq = [x E A: Xk + X = ak + x and xk = q)   for cy E D(mk,2k).

Evidently diam/i^ < 2 and C = [Aq: q E D(mk,2k)) is a covering of A

such that C = mk.

Remark 1. If A and Y are compact metric spaces such that X > Y and

Y > A then it is well known that A and Y are isometric. Thus if mk < oo for

every integer /c then the initial space for M = M(mk: k = 0,±1,...) is

unique up to isometry.

Remark 2. Theorem 1 implies the well-known theorems: (i) every complete

and totally bounded metric space is compact, (ii) every metric compact space

is a continuous image of the Cantor Discontinuum C = IIaLo ^(2> 2~k), (iii)

every complete separable metric space is a continuous image of the space of

irrational numbers.

Indeed, if X is complete and totally bounded then there is a sequence of
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integers (mk: k = 0,±l,...) such that N(X,k) < mk for k — 0, ±1,-
Then A is a continuous image of D = ]T D(mk^k)- Thus A is compact.

Furthermore, we can assume that each mk is a power of 2, i.e., that D(mk,2k)

is homeomorphic to the cartesian product of finitely many 2-point spaces.

Thus D is homeomorphic to the Cantor Discontinuum.

Now let A be an arbitrary complete metric space. We can assume in

addition that diam A < 1. Then A is a metric image of D = D(mk\2k) where

mk = 0 for positive k and mk is countable infinite for k < 0. But D is

homeomorphic to the space of irrational numbers.

2. In 1961 A. Pelczyñski conjectured and the author proved that

For every class of compact spaces with uniformly bounded diameters

(*)      and (global) capacities there exists a universal (in the sense of

isometric embeddings) compact space.2

One of two proofs the author gave (but never published) required a version

of Theorem 1 of this paper, with local capacity replaced by the global one (see

[3]). Since versions with global and local capacity of Theorem (*) are

equivalent, we will use the local capacity. The following notion of Met (A, F)

and its basic properties (including a metric version of Banach-Stone's theo-

rem) were obtained by the author in 1961/62 (see [2]).

Given metric spaces A, F let Met (A, F) be the set of all metric maps of A

into F, with the uniform metric

d(fg) = sup(d(f(x),g(x)): x GX).

In general Met (A, F) is a generalized metric space (sometimes d(f,g) = co),

but if A or F is bounded then d(fg) < co for every f, g G Met (A, F). If

both A, F are compact then Met (A, Y) is compact by Arzela's theorem).

Property 1. Let <j>: A, —> X2 be a metric map. Then function

4>: Met(A2,F)^ Met(A,,F)

given by $(/) = / ° <i> is metric. Moreover, if <p is onto (or onto a dense subset

of X2) then 3> is an isometric embedding.

Property 2. Let A be a metric space and / 2 [0; diam A]\{oo} be an

interval of reals. Then A can be isometrically embedded in Met (X,I). An

embedding /: A -* Met (A,/) is given by (i(x))(y) = d(x,y) for x, y G X (cf.

[5], [4]).
Combining Properties 1,2 and Theorem 1 from § 1, we obtain the following

generalized version of (*).

Theorem 2. Every space of M can be isometrically embedded in U

= Met (D, [0;2"]), where M, n, D are as in Theorem 1. // in addition, all

cardinals mk, k = 0, ±1, ..., are finite then U is compact.
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