
PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 58, July 1976

ON BOUNDED po-SEMIGROUPS

ZAHAVA SHMUELY

Abstract. The bounded po-semigroup 5 is investigated by studying its

increasing elements u (< u ) and decreasing elements v (> v2). In particu-

lar, in S, 01 (= 0T), 10 (= l"0m), 010 and 101 are all idempotents and

010 = 01 A£ 10, 101 = 10 V£ 01, E the set of idempotents of 5 ordered as
a subset of S. In S, Oal = 01 and laO = 10 holds for each a G S.

Consequently, 5 has a zero element z iff 01 = 10 and in that case z = 01. 5

cannot be cancellative unless it is trivial. J0 = S10S Q S is the kernel of 5

and consists of all (idempotents) a G S satisfying aSa = a. Thus when S is

a (zero) simple bounded po-semigroup then aSa = [a,z] and either a = a

or a2 = z for each a G S. When 5 = Xx, the po-semigroup of isotone

maps / on the bounded poset X, then J0 consists of all constant maps on X,

hence J0 ^ X. The following generalization of Tarski's fixed point theorem

is obtained: Let 5 be a complete (lattice and a) po-semigroup and let i G S

be given. Then the set Es (Js) of all elements x0 G £(e/0 resp.) satisfying

sx0 = xQs = x0 is a nonempty complete lattice when ordered as a subset of

5.

1. Let S denote a partially ordered (po) semigroup [1], [3]. Thus S is a

semigroup endowed with a partial order <, such that a < b E S implies

ac < be and ca < cb for each c E S. S is bounded if S contains universal

bounds 0, 1 such that 0 < s < 1 for each s E S. If S is a po-semigroup which

is a complete lattice with respect to < we say that 5 is a complete po-

semigroup. An element z(i) satisfying zs = sz = z (is = si = s resp.) for each

s G S is a zero (identity resp.) element of the semigroup 5 [2]. In general, 0, 1

must not be interchanged with z and /'. Thus, e.g., let S = Xx [1], be the po-

semigroup of isotone maps /: X -» X, X a bounded poset. The semigroup

operation in Xx is function composition and the order is the pointwise partial

order. In Xx we clearly have 01 = 0, 10 = 1.

In this paper we study algebraic properties of a po-semigroup S. Two classes

of elements, more general than the classes of positive and negative elements

[3, p. 154], usually studied in po-semigroups, are introduced and shown to be

of special significance. Thus u E S is increasing if u < u2, and v E S is

decreasing if v2 < v. Obviously, e is both increasing and decreasing iff e is

idempotent, namely e = e2. Let U, V Q S denote the sets of increasing

(decreasing resp.) elements of S. U, V and E — U C\ V are ordered as subsets

of S. Increasing and decreasing elements of Xx are treated in [6] and shown

to form natural extensions of closure and anticlosure operators. As noted in

[6, §7], it is the combined increasing-decreasing character of the identity /'
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which is mainly responsible to the peculiar properties of Galois connections

[5], [1] between two posets.

The existence in a po-semigroup S of elements u, v such that u E U, v E V

and u < v (which is the case, e.g., for 0, 1 when S is bounded since

0 < 02 < l2 < 1) gives rise to results of basic importance. Thus uv, vu, uvu

and vuv are idempotents with uvu = uv AE uv, vuv = vu \/E uv. The structure

of the subsemigroup S* generated by {«, v) is determined. For a bounded po-

semigroup S we have: S contains a zero z iff 01 = 10 holds, and in that case

z = 01. S cannot be cancellative unless it is trivial. 5 has a nonempty kernel

Jq = S IOS, which is the minimal ideal of S and x E J0 iff x = x2 = xSx.

When S = X , J0 consists of all constant maps, hence J0 ~ X. A characteri-

zation of (zero) simple bounded po-semigroups follows. Thus, e.g., when S is

zero-simple, either z = 1 or z = 0, and for each x E S either x2 = x or

x2 = z and xSx = {x,z} for x ^ z. Consequently a (zero) simple bounded po-

semigroup is completely (zero) simple.

It is interesting to note that an analogue of Tarski's fixed point theorem [7],

[1, p. 115], holds in an arbitrary complete po-semigroup S. Thus for each

i E 5 the set of idempotent elements x0 (G E) E J0 satisfying x0s = íj>c0

= x0 is a nonempty complete lattice when ordered as a subset of S. When

applied to S = Xx this is precisely Tarski's theorem.

2. We deal here with some basic algebraic properties of po-semigroups. At

first we have:

Lemma 1.2. Let v2 < v G 5 where S is a po-semigroup, and let x < v. Then:

(i) xv < v, vx < v; (ii) both vx and xv are decreasing elements.

Proof, (i) follows by xv < v2 < v and vx < v2 < v. To prove (ii) note that

(xv)   < xv* < xv2 < xv. (vx)   < vx follows similarly.

Dually we get:

Lemma 1*.2. Let u < u E S where S is a po-semigroup, and let y > u.

Then: (i) yu > u, uy > u; (ii) both uy andyu are increasing elements.

Corollary 1.2. If v E S is decreasing, then (v], the principal (order) ideal

generated by v is a convex po-subsemigroup of S. If u G S is increasing, then [u),

the principal dual (order) ideal generated by u is a convex po-subsemigroup of S.

If in a po-semigroup S a pair (u, v) of elements is given such that u in

increasing, v is decreasing and u < v then the chain of inclusions

(1) u < u2 < ■ • • < u" < • ■ • < v" < • • • < v2 < v

is obtained. Note that in a po-group the existence of such a pair (u, v) is

impossible unless u = v = i. The following theorem plays a central role in

what follows.

Theorem 1.2. Let S be a po-semigroup and let u,v E S be given such that u is

increasing, v is decreasing and u < v. Then: (i) for each x E [u,v] we have

uxv = uv, vxu = vu; (ii) u"vm = uv, v"um = vu for n, m > 1; (iii) the ele-

ments uv, vu, uvu, and vuv are idempotents; (iv) uvu = uv AE vu = uv Av vu,

and vuv = vu Vg uv = vu \/v uv.
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Proof. If u < x < v then uv < u2v < uxv < uv2 < wf and uxv = «¡a

Similarly, we get vxu = vu and (i) follows, (ii) is a special case of (i) since

ukvl, vkul E [u, v] for k, I > 0. To prove (iii) note that by Lemmas 1.2(h),

l*.2(ii) the elements uv, vu are both increasing and decreasing, hence are

idempotent. Since u < u2 < (uv) = uv, vu = (vu) < v2 < v, the last men-

tioned result applied again yields that both uvu and vuv are idempotent. To

prove (iv) note that uvu < uv, vu. Now if t < t2 E S satisfies t < uv, t < i»m

then obviously ? < r2 < uvvu = uvu by (ii) and uvu = uv AE vu = uv Ay vu

follows. The second part of (iv) follows similarly.

Corollary 2.2. If a po-semigroup S contains elements u, v such that

u < u2 < v2 < v then £#0.

Note that under the conditions of Theorem 1.2 it acutally follows that if

u < x < y < v and if ux denotes either ux or xu while vx denotes either vy or

yv then both uxvx and vxux are idempotents with uxvxux = uxvx AEvxux,

vx ux vx = vx ux \JE ux vx.

Corollary 3.2. Let S be a po-semigroup and let u, v E 5 satisfy u < u2

< v2 < v. Then S, the subsemigroup generated by {u,v} is an order-and

semigroup-epimorphic image of S*, the "free" po-semigroup generated by u and v

where

(2) S* = {«"}n=1,2,...  U {vn}n=xx...  U {uvu,uv,vu,vuv}.

Notice that the last four elements in (2) form an idempotent po-subsemi-

group. S* is given in Figure 1 with multiplication given by Theorem l(ii).

mvuv

vu af    jguv

<BUVU

¿Í
Figure 1

Theorem 1 and Corollary 3 hold, in particular, when either u, v or both u and

v are idempotents. Thus if u = u2 < v = v2 then S*, the po-subsemigroup

generated by u and v, is an idempotent semigroup consisting of the six

encircled elements in Figure 1. Clearly when 5 is linearly ordered then S*

consists of at most four elements (this is the case in [4] where 5 is a linearly

ordered idempotent semigroup). We conclude this section with

Corollary 4.2. Let S be a po-semigroup.  Then S Q S is a convex bounded po-

subsemigroup of S iff S = [u, v] for some u, v E S such that u < u2 < v2 < v.
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3. In this section we apply the results of §2 to the bounded po-semigroup S.

Since 0 < 02 < l2 < 1, it follows by Theorem 1.2 that the elements 01, 10,

010 = 01 AE 10 and 101 = 10 v£ 01 are all idempotent, and for each x G S

(3) 0x\ = 01,        1x0 = 10.

The following lemma is well known for po-groups.

Lemma 1.3. A cancellative po-semigroup cannot be bounded unless it is trivial.

Proof. Assuming S is both bounded and cancellative we get by (3) that

031 = 021, 013 = 012 implying that 0 = 01 = 1.

The question of the existence of a zero element in a bounded po-semigroup

is settled by

Theorem 1.3. Let S be a bounded po-semigroup. Then S has a zero element z

iff0\ = 10, and in that case z = 01.

Proof. If z G S, then 01 < zl = z = 0z < 01 and so 2 = 01, while

10 < lz = z = zO < 10 implies z = 10. Conversely, if 01 = 10 holds, then

for each x E S, 01 = 02 1 < x0\ < 101 = 012 = 01, hence xOl = 01. 0\x
= 01 follows similarly and 01 = z is the unique, two-sided zero element of S.

Corollary 1.3. A commutative bounded po-semigroup contains a zero ele-

ment.

The following can easily be proved using (3).

Lemma 2.3. Let e denote any of the idempotents 01, 10, 101 or 010 in a bounded

po-semigroup S. Then: (i) e is a primitive idempotent satisfying eSe = e; (ii) //

a = xey for some x, y E S then a = a2 = aSa.

y ç S is a (semigroup) ideal of 5 if 75 Ç J, SJ G J. Let J0, the kernel of S,

denote the intersection of all ideals of S. S is (zero) simple [2] if 5 contains no

proper ideal (except {z} when z G S).

Theorem 2.3. Let S be a bounded semigroup. Then J0, the kernel of S, is

nonempty and consists of all elements x E S satisfying x = x2 = xSx. J0

= SOIS = SxSfor each x E J0.

Proof. If J is a nonempty ideal of S then 01 =0/1 Q SJS Q J (see (3)).

Thus 5015 Ç J for each ideal J and J0 = 5015. By Lemma 2.3 we get that
each x G J0 satisfies x = x2 = xSx, and obviously J0 Q SxS Ç 5015 = J0.

Conversely if x = xSx then x = x0\x E 5015 = J0 which completes the

proof.

Notice that by Theorem 1.3, J0 = {z} iff 01 = 10.

Corollary 2.3. Let S = X where X is a bounded poset. Then J0 ~ X and

consists of all constant maps on X.

Proof. In 5, 0/ = 0 holds for each / G 5. Thus J0 = 5015 = 50 and
g G J0 iff g = fO, i.e., g(x) = /(0) for each x E X. Hence J0 consists of

constant maps. Moreover, since g = gSg holds for each constant map g G 5

the theorem follows using Theorem 2.3.
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In case 5 is a complete po-semigroup we get:

Theorem 3.3. If S is a complete po-semigroup then J0, the kernel of S, is a

complete lattice in the order induced by S.

Proof. Let {*■} Q J0 be given. If y = V Xj then ^0 = >>01.y > XjOXxj = Xj

for each j, soy0 E J0 and.y0 > Vxy = y. If for some x E J0, x > \l Xj = y,

then x = xOlx > yOly = _y0 follows and so y0 = V/0Xy- The existence of

Ay Xj is proved similarly.

Turning now to bounded po-semigroups which are (zero) simple we get

using Theorem 2.3:

Theorem 4.3. Let S be a bounded po-semigroup without zero. Then S is simple

iff S is an idempotent semigroup with xSx = x for each x E S, that is, iff S is a

rectangular band.

Let us now assume that S has a zero element (z = 01 = 10) and is zero-

simple. Assuming z =£ 1 it follows (see [2, Lemma 2.28]) that S = SIS hence

0 = xl_y for some x, y E S and so 0 = x\y > 010 = z > 0 implying z = 0.

Similarly z ¥= 0 would imply z = 1. In both cases we have

Theorem 5.3. Let S be a zero-simple bounded po-semigroup. Then for each

x E S either x2 = x or x2 = z and xSx = {x, z}.

Proof. We can assume z = 0 = 10 = 01 and z ¥= 1. Since 5 = SxS for

x ¥= z,

(*) lxl - 1

is obvious. By 5 = SIS we get that each (z =£) x E 5 satisfies x = alb for

some a, b E S. Consequently x2 = a\ba\b equals either x (if ba =t z) or z (if

Z»fl = z). xSx = tflo&zl/j = {x, z} follows by observing that bSa ¥* {z} when ¿», a

=£ z [2, Chapter 2] and by (*).

Corollary 3.3. A (zero)-simple bounded po-semigroup S is completely (zero)

simple.

4. Here we show that analogues of Tarski's fixed point theorem hold in any

complete po-semigroup S. If x0s = sx0 = x0 holds for some s, x0 E S we say

that x0 is fixed by s. We now state

Theorem 1.4. Let S be a complete po-semigroup and let s E 5 be given. Then

there exists an idempotent x0 E 5 which is fixed by s. Moreover, Es, the set of

idempotents fixed by s is a complete lattice when ordered as a subset of S.

This theorem will follow by

Lemma 1.4. Let S be a complete po-semigroup and let s G S be given. If

m G S is increasing and sm > m, ms > m then there exists y0 G S such that

(i) m < y0, (ii) y0 = y\, (iii) y0 is fixed by s and (iv) y0 is the least element

satisfying (i), (ii), and (iii).
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Proof. Let A^ denote the set of decreasing elements x¡ E S satisfying

m < Xj, sxj < Xj, XjS ^ Xj. Xs # 0 since 1 G A^. Letting y0 = Ax¡ we

have

yl = (Axj)(Axj) <  Ax2 <  Ax,- = >>0.

Obviously

m <  Axy = 70,    iy0 = j( Ajcy) <  As*,- <  Axj = y0,

and _k05 < ya follows similarly, hence y0 E X . By (y2,) < yl and m < m2

< ^q together with syg < ^o and y$s < .yjj we have /q ^ Xs- Thus >>0 < jxj,

and y0 = y}¡ E E follows. Obviously m < ms < y0s, and (>'oí)(>'oí) < yhs

= 70i. Thus y0s is decreasing. By ¿(.ygi) = (syo)s < 7gj together with

(^0i)j < y^s one gets that y0s E Xs and so y0 < _v0i. y0s = _v0 follows and

sy0 = _y0 can be shown similarly. Consequently y0 was shown to satisfy (i), (ii),

(iii), and is by definition the least element having these properties.

Proof of Theorem 1.4. Since 0 < 02 with 0 < sO, 0 < Oí, Lemma 1.4

implies the existence of a minimal idempotent y0 > 0 which is fixed by s.

Obviously, y0 = 0E¡. For any set {yj} G Es put m = S/yj. The fact that m is

increasing with m < ms, m < sm is easily checked. Lemma 1.4 applied again

yields the existence of an idempotent y* fixed by s such that y* = \ZgVj ■ Thus

Es is a complete lattice.

Tarski's theorem can be even better "approximated" (Corollary 2.3) and

actually generalized by

Theorem 2.4. Under the conditions of Theorem 1.4 the set Js Q Esof elements

y0 E Jq fixed by s is a nonempty complete lattice in the order induced by 5.

Proof. Obviously (Theorem 2.3) Jq Q E and for each x E Es, x0 = xO\x

E J0 and x0 is fixed by s. Thus Js =£ 0. For any set {xj} G Js let x = AEsx¡

(Theorem 1.4). Then as in Theorem 3.3 one can easily show that jcOli

= AjsXj. The existence of V^xj is proved analogously.

By similar methods another of Tarski's theorems [7] can be generalized:

Theorem 3.4 Let S be a complete po-semigroup and let sxs2 = s2sx for some

sx, s2 E 5. Then Es¡ D E   is a nonempty complete lattice.

As an application of Theorem 2.4, we state

Corollary 1.4. Let R be a ring and let I0 Q R be a given (two-sided) ideal.

Then the set of all ideals 1ER satisfying I0I = II0 = I = I2 is a nonempty

complete lattice when ordered by inclusion.
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