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ON BOUNDED po-SEMIGROUPS

ZAHAVA SHMUELY

ABSTRACT. The bounded po-semigroup S is investigated by studying its
increasing elements u (< ) and decreasing elements v (> v2). In particu-
lar, in S, 01 (= 0"1™), 10 (= 1"0™), 010 and 101 are all idempotents and
010 = 01 Ag 10, 101 = 10 Vg Ol, E the set of idempotents of S ordered as
a subset of S. In S, O0al = 01 and 1a0 = 10 holds for each a € S.
Consequently, S has a zero element z iff 01 = 10 and in that case z = 01. S
cannot be cancellative unless it is trivial. J; = S10S C S is the kernel of S
and consists of all (idempotents) a € S satisfying aSa = a. Thus when S is
a (zero) simple bounded po-semigroup then aSa = {a,z} and either a> = a
or a®> = z for each a € S. When S = XX, the po-semigroup of isotone
maps f on the bounded poset X, then J; consists of all constant maps on X,
hence J; =~ X. The following generalization of Tarski’s fixed point theorem
is obtained: Let S be a complete (lattice and a) po-semigroup and lets € S
be given. Then the set E, (J) of all elements x, € E (&€ J, resp.) satisfying
§Xg = Xo$ = X, is a nonempty complete lattice when ordered as a subset of
S.

1. Let S denote a partially ordered (po) semigroup [1], [3]. Thus S is a
semigroup endowed with a partial order <, such that a < b € S implies
ac < bc and ca < cb for each ¢ € S. S is bounded if S contains universal
bounds 0, 1 such that 0 < s < 1| foreachs € S. If Sis a po-semigroup which
is a complete lattice with respect to < we say that S is a complete po-
semigroup. An element z(J) satisfying zs = sz = z (is = si = s resp.) for each
s € Sis a zero (identity resp.) element of the semigroup S [2]. In general, 0, 1
must not be interchanged with z and i. Thus, e.g., let S = X*¥ [1], be the po-
semigroup of isotone maps f: X — X, X a bounded poset. The semigroup
operation in X% is function composition and the order is the pointwise partial
order. In XX we clearly have 01 = 0, 10 = 1.

In this paper we study algebraic properties of a po-semigroup S. Two classes
of elements, more general than the classes of positive and negative elements
[3, p. 154], usually studied in po-semigroups, are introduced and shown to be
of special significance. Thus u € S is increasing if u < u*, and v € S is
decreasing if v? < v. Obviously, e is both increasing and decreasing iff e is
idempotent, namely e = e?. Let U, V C S denote the sets of increasing
(decreasing resp.) elements of S. U, ¥ and E = U N V are ordered as subsets
of S. Increasing and decreasing elements of X X are treated in [6] and shown
to form natural extensions of closure and anticlosure operators. As noted in
[6, §7], it is the combined increasing-decreasing character of the identity i
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which is mainly responsible to the peculiar properties of Galois connections
[5], [1] between two posets.

The existence in a po-semigroup S of elements u, v such thatu € U,v € V
and u < v (which is the case, e.g., for 0, 1 when S is bounded since
0 < 02 < 12 < 1) gives rise to results of basic importance. Thus uv, vu, uvu
and vuv are idempotents with uvu = wv Ag wv, vuv = vu Vg uv. The structure
of the subsemigroup S* generated by {u,v} is determined. For a bounded po-
semigroup S we have: S contains a zero z iff 01 = 10 holds, and in that case
z = 01. S cannot be cancellative unless it is trivial. § has a nonempty kernel
Jo = S10S, which is the minimal ideal of S and x € J; iff x = x* = xSx.
When S = XX, J, consists of all constant maps, hence J, =~ X. A characteri-
zation of (zero) simple bounded po-semigroups follows. Thus, e.g., when S is
zero-simple, either z = 1 or z = 0, and for each x € § either x2 = x or
x? = zand xSx = {x,z} for x # z. Consequently a (zero) simple bounded po-
semigroup is completely (zero) simple.

It is interesting to note that an analogue of Tarski’s fixed point theorem [7],
[1, p. 115], holds in an arbitrary complete po-semigroup S. Thus for each
s € S the set of idempotent elements xy (€ E) € J; satisfying x5 = sxq
= x, is a nonempty complete lattice when ordered as a subset of S. When
applied to S = XX this is precisely Tarski’s theorem.

2. We deal here with some basic algebraic properties of po-semigroups. At
first we have:

LEMMA 1.2. Let v? < v € S where S is a po-semigroup, and let x < v. Then:
(1) xv < v, vx < v; (i) both vx and xv are decreasing elements.

PrOOF. (i) follows by xv < v? < vand vx < v? < v. To prove (i) note that
(xv)? < xv3 < xw? < xv. (vx)* < vx follows similarly.
Dually we get:

LEMMA 1*¥2. Let u < u> € S where S is a po-semigroup, and let y > u.
Then: (1) yu > u, uy > u; (ii) both uy and yu are increasing elements.

COROLLARY 1.2. If v € S is decreasing, then (v, the principal (order) ideal
generated by v is a convex po-subsemigroup of S. If u € S is increasing, then [u),
the principal dual (order) ideal generated by u is a convex po-subsemigroup of S.

If in a po-semigroup S a pair (u, v) of elements is given such that u in
increasing, v is decreasing and u < v then the chain of inclusions

(1) U< <U <Y<ty

is obtained. Note that in a po-group the existence of such a pair (u,v) is
impossible unless u = v = i. The following theorem plays a central role in
what follows.

THEOREM 1.2. Let S be a po-semigroup and let u,v € S be given such that u is
increasing, v is decreasing and u < v. Then: (i) for each x € [u,v] we have
uxv = uv, vxu = vu; (i) ¥"v™ = w, v"u"™ = vu for n, m > 1; (iii) the ele-
ments wv, vu, uvu, and vuv are idempotents; (iv) uvu = w Ngvu = uv Ay vu,
and vuv = vu Vg uv = vu Vi uv.
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PrOOF. If u < x < v then wv < w?v < wuxv < ww? < wv and uxv = .
Similarly, we get vxu = vu and (i) follows. (ii) is a special case of (i) since
kvl vkl e [u,v] for k, I > 0. To prove (iii) note that by Lemmas 1.2(i1),
1*.2(ii) the elements uv, vu are both increasing and decreasing, hence are
idempotent. Since u < u* < (uv)2 = w, vu = (vu)2 < v? < v, the last men-
tioned result applied again yields that both wvu and vuv are idempotent. To
prove (iv) note that uvu < uv, vu. Now if 1 < 12 € Ssatisfies t < wv, t < vu
then obviously ¢ < 72 < wwwu = wvu by (ii) and uwu = w A EVU = uv Ny vu
follows. The second part of (iv) follows similarly.

COROLLARY 2.2. If a po-semigroup S contains elements u, v such that
u<u?<v:<vthenE # @.

Note that under the conditions of Theorem 1.2 it acutally follows that if
u < x < y < vand if 4 denotes either ux or xu while v; denotes either vy or
yv then both wv; and v,y are idempotents with wyvyu = wv; Agv u,
Vv = U Yy \/E mvy.

COROLLARY 3.2. Let S be a po-semigroup and let u, v € S satisfy u < u?

< v? < v. Then S, the subsemigroup generated by {u,v} is an order-and
semigroup—epimorphic image of S*, the “free” po-semigroup generated by u and v
where

() S* = ("o, U v o, Y {uwu, w, vu, vuv}.

s e

Notice that the last four elements in (2) form an idempotent po-subsemi-
group. S* is given in Figure 1 with multiplication given by Theorem 1(ii).
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FIGURE 1

Theorem 1 and Corollary 3 hold, in particular, when either u, v or both » and
v are idempotents. Thus if ¥ = u?> < v = v? then S*, the po-subsemigroup
generated by # and v, is an idempotent semigroup consisting of the six
encircled elements in Figure 1. Clearly when S is linearly ordered then S*
consists of at most four elements (this is the case in [4] where S is a linearly
ordered idempotent semigroup). We conclude this section with

COROLLARY 4.2. Let S be a po-semigroup. Then S C S is a convex bounded po-
subsemigroup of S iff S = [u,v] for some u, v € S such that u < u* < v? < v.
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3. In this section we apply the results of §2 to the bounded po-semigroup S.
Since 0 < 02 < 12 < 1, it follows by Theorem 1.2 that the elements 01, 10,
010 = 01 Ag 10 and 101 = 10 Vg 01 are all idempotent, and for each x € §

(3) Ox1 = 01, 1x0 = 10.
The following lemma is well known for po-groups.
LEMMA 1.3. 4 cancellative po-semigroup cannot be bounded unless it is trivial.

PrOOF. Assuming S is both bounded and cancellative we get by (3) that
031 = 0?1, 01> = 012 implying that 0 = 01 = 1.

The question of the existence of a zero element in a bounded po-semigroup
is settled by

THEOREM 1.3. Let S be a bounded po-semigroup. Then S has a zero element z
iff 01 = 10, and in that case z = Ol.

Proor. If z € S, then 01 < z1 =z = 0z < 01 and so z = 01, while
10 < 1z = z = 20 < 10 implies z = 10. Conversely, if 01 = 10 holds, then
for each x € §, 01 = 0?1 < x01 < 101 = 012 = 01, hence x01 = 01. 0lx
= 01 follows similarly and 01 = z is the unique, two-sided zero element of S.

COROLLARY 1.3. A4 commutative bounded po-semigroup contains a zero ele-
ment.

The following can easily be proved using (3).

LEMMA 2.3. Let e denote any of the idempotents 01, 10, 101 or 010 in a bounded
po-semigroup S. Then: (i) e is a primitive idempotent satisfying eSe = e; (ii) if
a = xey for some x,y € S thena = a* = aSa.

J C Sis a (semigroup) ideal of Sif JS C J, SJ C J. Let J, the kernel of S,
denote the intersection of all ideals of S. S is (zero) simple [2] if S contains no
proper ideal (except {z} when z € ).

THEOREM 2.3. Let S be a bounded semigroup. Then J,, the kernel of S, is
nonempty and consists of all elements x € S satisfying x = x* = xSx. Do
= S01S = SxS for each x € J;.

PrROOF. If J is a nonempty ideal of S then 01 = 0J1 C SJS C J (see (3)).
Thus SO1S C J for each ideal J and J; = S01S. By Lemma 2.3 we get that
each x € Jj satisfies x = x> = xSx, and obviously J; C SxS C S01S = Jj.
Conversely if x = xSx then x = x01x € SO01S = J; which completes the
proof.

Notice that by Theorem 1.3, J, = {z} iff 01 = 10.

COROLLARY 2.3. Let S = XX where X is a bounded poset. Then Jy ~ X and
consists of all constant maps on X.

Proor. In S, Of = 0 holds for each f € S. Thus J; = S01S = S0 and
g € Jp iff g = f0, ie., g(x) = f(0) for each x € X. Hence J; consists of
constant maps. Moreover, since g = gSg holds for each constant map g € S
the theorem follows using Theorem 2.3.
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In case S is a complete po-semigroup we get:

THEOREM 3.3. If S is a complete po-semigroup then J,, the kernel of S, is a
complete lattice in the order induced by S.

PrOOF. Let {x;} C Jy be given. If y = V x; then y = y0ly > x;0lx; = x;
for each j, soyy € Jyand yy > Vx; = y. If forsomex € Jy, x > Vx; =y,
then x = x01lx > y0ly = y, follows and so yo = \j x;. The existence of
N j,;j 1s proved similarly.

Turning now to bounded po-semigroups which are (zero) simple we get
using Theorem 2.3:

THEOREM 4.3. Let S be a bounded po-semigroup without zero. Then S is simple
iff S is an idempotent semigroup with xSx = x for each x € S, that is, iff S is a
rectangular band.

Let us now assume that S has a zero element (z = 01 = 10) and is zero-
simple. Assuming z # 1 it follows (see [2, Lemma 2.28]) that S = S1S hence
0 = xlyfor some x,y € Sandso 0 = xly > 010 = z > 0 implyingz = 0.
Similarly z # 0 would imply z = 1. In both cases we have

THEOREM 5.3. Let S be a zero-simple bounded po-semigroup. Then for each
x € S either x* = x or x* = z and xSx = {x,z}.

Proor. We can assume z = 0 = 10 = 01 and z # 1. Since S = SxS for
X # z,

(*) Ixl = 1

is obvious. By § = S1S we get that each (z #) x € S satisfies x = alb for
some a, b € S. Consequently x> = albalb equals either x (if ba #* z) or z (if
ba = z). xSx = albSalb = {x, z} follows by observing that bSa # {z} when b, a

# z [2, Chapter 2] and by (*).

COROLLARY 3.3. 4 (zero) simple bounded po-semigroup S is completely (zero)
simple.

4. Here we show that analogues of Tarski’s fixed point theorem hold in any
complete po-semigroup S. If xos = sx; = xg holds for some s, x, € S we say
that x; is fixed by s. We now state

THEOREM 1.4. Let S be a complete po-semigroup and let s € S be given. Then
there exists an idempotent xy € S which is fixed by s. Moreover, E,, the set of
idempotents fixed by s is a complete lattice when ordered as a subset of S.

This theorem will follow by

LEMMA 1.4. Let S be a complete po-semigroup and let s € S be given. If
m € § is increasing and sm > m, ms > m then there exists yy, € S such that
(@) m < yg, (i) yo = »3, (iii) yq is fixed by s and (iv) Yo s the least element
satisfying (i), (ii), and (iii).
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PrOOF. Let X, denote the set of decreasing elements x; € § satisfying
m < x;, 5% < X, X8 < x;. Xy # J since 1 € X;. Letting yp = Ax; we
have

0_(/\x)(/\x) _]2< /\Xj'_—yo.
Obviously

< Ax; =y, s =s(Ax;) < Asx; < Ax; =y,

and yos <y follows 31m11arly, hence Yo e X,. By ( yo) yO and m < m?

< i together with sy3 < y§ and y}s < y§ we have y§ € X,. Thus y, < yo,
and y, = y3 € E follows. Obviously m < ms < y,s, and ( yos)( v05) < yés
= yos. Thus y,s is decreasing. By s(yys) = (syp)s < yos together with
(¥0$)s < ygs one gets that ygs € X, and so yy < ygs. yos = yg follows and
$¥p = Yo can be shown similarly. Consequently y, was shown to satisfy (i), (ii),
(iii), and is by definition the least element having these properties.

PrOOF OF THEOREM 1.4. Since 0 < 0% with 0 < 50,0 < Os, Lemma 1.4
implies the existence of a minimal idempotent y, > 0 which is fixed by s.
Obviously, yy = Of,. For any set { y;} C E;putm = V y;. The fact that m is
increasing with m < ms, m < sm is easily checked. Lemma 1.4 applied again
yields the existence of an idempotent yg fixed by s such that y§ = Vf,y;. Thus
E, is a complete lattice.

Tarski’s theorem can be even better “approximated” (Corollary 2.3) and
actually generalized by

THEOREM 2.4. Under the conditions of Theorem 1.4 the set J, C E of elements
Yo € Jp fixed by s is a nonempty complete lattice in the order induced by S.

PrOOF. Obviously (Theorem 2.3) J, C E and for each x € E, xog = x0lx
€ Jp and x, is fixed by s. Thus J; # . For any set {x;} C J let £ = Agx;
(Theorem 1.4). Then as in Theorem 3.3 one can easily show that £01x
= /\; x;. The existence of \/ x, is proved analogously.

7 s7J
By similar methods another of Tarski’s theorems [7] can be generalized:

THEOREM 3.4 Let S be a complete po-semigroup and let s;s, = s, 5, for some
51,5y € S. Then Eg N E;, is a nonempty complete lattice.

As an application of Theorem 2.4, we state

COROLLARY 1.4. Let R be a ring and let Iy C R be a given (two-stded) ideal.
Then the set of all ideals 1 C R satisfying Iyl = Il = I = I1? is a nonempty
complete lattice when ordered by inclusion.
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