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FIBERED knots IN HOMOTOPY 3-SPHERES

JONATHAN SIMON1

Abstract. Using the recently obtained result that each closed, orientable

3-manifold has a fibered knot, we exhibit a new equivalent of the 3-

dimensional Poincaré conjecture.

F. González-Acuña has shown recently [5] that each closed, orientable 3-

manifold M contains a fibered knot, that is, a tame knot K such that the

exterior of K, E(K), admits a fibration E(K) —* S over a circle. Using this

result, we can establish

Theorem 1. Let M be a homotopy 3-sphere. Suppose M has the property that
"3

far each fibered knot K in M there exists a tame knot L in the 3-sphere S   such

that 77j(M — K) is isomorphic to ttx(S   — L). Then M is homeomorphic to S .

This theorem can be viewed as a sharpening of a result of A. Connor and a

converse of a theorem of L. Neuwirth. Connor's result [3] is similar to

Theorem 1, but one needs to postulate that all the knot groups of M are "real"

knot groups, not just those of fibered knots. Neuwirth shows (Theorem 9.2.3

of [7]) how, given a group G satisfying certain algebraic conditions, one can

construct a homotopy 3-sphere with a fibered knot whose group is G; the

theorem is stated in the form "... then, if the Poincaré conjecture is true,

there exists a tame knot k in S such that trx(S — k) *» G". Our converse is

that if each such group G is isomorphic to the group of a knot in 5 , then the

Poincaré conjecture is true. Combining this with Neuwirth's theorem, we have

Theorem 2. The 3-dimensional Poincaré conjecture is equivalent to the

conjecture that each group G with the properties listed below is isomorphic to the

group of a tame knot in S .

(1) The commutator quotient G/[G, G] is infinite cyclic.

(2) [G, G] is a free group of rank 2n.

(3) G has an element t whose normal closure ("consequence") is all of G.

(A) There is a free basis ax, ..., an,bx, ..., bnfor [G, G] such that t commutes

with the product of commutators II"=i [û,->£>,■]■

In the case where n = 1, Bürde and Zieschang [2] establish the above
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conjecture by showing that G must be isomorphic to the group of a trefoil or

figure-eight knot.

Our plan for proving Theorem 1 is to construct in the homotopy 3-sphere

M a fibered knot K with enough special properties that if L is a knot in S3

with 77,(5 — L) as 77[(A/ — K), then such an isomorphism preserves enough

of the geometry of M — F that we can conclude that M is homeomorphic to

S3.

Preliminaries. All spaces, subspaces, and maps considered here are polyhe-

dral. If F is a knot in a homology 3-sphere M, and U is a regular

neighborhood of K, the exterior of K, E(K), is M — int (U). There is a pair of

orthogonal simple closed curves ¡u, À in 3 U such that ¡i bounds a disk in U, and

therefore generates HX(E(K)), and À is null-homologous in E(K). The curves

/i and X are unique up to orientations and ambient isotopy of 3 U. We call ¡x a

meridian of F and À a longitude. A simple closed curve in 3 U homologous to

pp. + qX is a (p, q)-cable about K. If F,, F2 are knots in M such that, for some

2-sphere S, Kx D S is an arc a, K2 n S = Kx (~) S, and 5" separates Kx - a

from F2 - a, then the knot F, U F2 - int (a), denoted F, # F2, is the

composition of F, with F2.

Lemma. Lei M be a homology 3-sphere. If K is the composition F, # F2 o/

fibered knots in M then K is a fibered knot. If K is a (p, q)-cable (q # 0) about

a fibered knot F0 then K is a fibered knot.

Proof. If K = Kx % K2, we can choose regular neighborhoods such that

E(K) is the sum E(KX) U E(K2), where E(KX) n F(F2) - 3F(F,)

n 3F(F2) =» A, an annulus whose center curve is a meridian of each of

Kx, K2. A fibration of E(K) over Sx can be constructed by adjusting the

fibrations/: E(K¡) -* S1 (i = 1,2) so that/, |¿ = f2\A.

If F0 is fibered and F is a (p,q)-cab\e about F0, we can again explicitly

construct a fibration of E(K) (or use Stallings' characterization [10] of 3-

manifolds that fiber over Sl). To see the fibering of E(K), first push F into the

interior of the regular neighborhood U(K0) and choose a regular neighbor-

hood U(K) contained in int U(K0). By considering how the exterior of a

(p,q/torus knot in S3 fibers over S1, we see that the manifold W = U(K0)

— int U(K) fibers over 5 with fiber a connected 2-manifold F of genus

\(p — l)(q — 1) having (q + 1) boundary components, one a longitude of F

on dU(K) and q components that are longitudes of F0 on 3t/(F0). We next

construct a new fibration for E(KQ) by composing the given one with a ¿7-fold

covering map of Sl -> S1. The fibrations of F(F0) and H7 are then combined

to give a fibration of E(K) over 5a with fiber a connected surface of genus

i(p- 1)(,7- 1) + ? (genus F).

Proof of Theorem 1. Our proof is similar to [9] so we shall omit details and

refer to [9] whenever practical.

Let M be a homotopy 3-sphere and suppose M has the property that the

group of each fibered knot in M is isomorphic to the group of a knot in 5 .



FIBERED KNOTS IN HOMOTOPY 3-SPHERES 327

By González-Acuña's theorem, there exists a fibered knot K in M. Let K be

a (1, 2)-cable about the composition K # R of K with a trefoil knot R. We shall

show that E(K # R) is homeomorphic to the exterior of a knot in S3.

By the Lemma above, K is a fibered knot, so there exists a knot Lin S3 with

77|(M - K) « ^(S3 - L). Let/: F(L) -* FÏÂ) be a homotopy equivalence.

The manifold E(K) is the sum of a solid torus T and E(K # /?), pasted

together along an annulus ^4 in their boundaries. For future reference, we note

that each boundary component of A is a (2, l)-cable about AT # /?, so 7r,C4)

does not contain an annihilator of itx(E(K)). As in [9, proof of Theorem 2],

we can homotopically alter/so that/- (A) is a finite collection Bx, ,.., BHoi

essential annuli in /s(L). We show in the next three paragraphs that we may

assume that n = 1 and f\Bx is a homeomorphism.

Since A does not carry an annihilator of trx(E(K)), we have, as in [9,

proof of Theorem 2, Claim 1], that each B¡ separates E(L) into a solid torus V¡

and the exterior Wi of a nontrivial knot. Although we do not know enough

about the knot L to proceed exactly as in [9], the proofs of Claims 2 and 3 can

be modified to show that the annuli Bx, ..., Bn can be ordered so that

Wx E ■■■ E Wn and Wn n Vx is a solid torus with (Wn n If, 5,,... ,Bn)

homeomorphic to (Bx X [1, n], Bx X {1},..., Bx X [n}).

Let g: E(K) —> E(L) be a homotopy inverse of/ Then g can be homotop-

ically adjusted so thatg- (Bx) is a collection Ax, ..., Am (m > 1) of essential

annuli in E(K). By modifying Lemma 2.3 of [9] to handle properly embedded

annuli in the exterior of a cable knot, we can show that, as loops, the

components of aAx are homotopic in dE(K) to the components of oA. If we

consider the composition / o g, we then see that / can be adjusted so that for

each i, f \ B¡ is a homeomorphism of B¡ onto A.

Now, as in Claim 6 of [9], we can use a "binding ties" argument to reduce

the number of annuli B¡, eliminating them in pairs until n < 1. Since neither

trx(T) nor ttx(E(K # R)) generates trx(E(K)), we must have n = \.

We complete the proof of Theorem 1 as in Claim 7 of [9]. The restriction

f\ ~ /l^i is a homotopy equivalence between Wx and E(K # R) and maps Bx

homeomorphically onto A. Using the composite knot structure of E(K $ R)

we can (Lemma 2.3 of [9]) homotopically alter / so that fx(oWx) E

dE(K# R). By Theorem 6.1 of [11], Wx is then homeomorphic to E(K% R).

Since the proofs [1], [4], [6], [8] that composite knots have "Property P" do not

depend on being in S , we conclude that a homeomorphism of E(K % R) to

Wx extends to a homeomorphism of M to S .
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