FIBERED KNOTS IN HOMOTOPY 3-SPHERES

JONATHAN SIMON¹

ABSTRACT. Using the recently obtained result that each closed, orientable 3-manifold has a fibered knot, we exhibit a new equivalent of the 3-dimensional Poincaré conjecture.

F. González-Acuña has shown recently [5] that each closed, orientable 3-manifold M contains a *fibered knot*, that is, a tame knot K such that the exterior of K, E(K), admits a fibration $E(K) \rightarrow S^1$ over a circle. Using this result, we can establish

THEOREM 1. Let M be a homotopy 3-sphere. Suppose M has the property that for each fibered knot K in M there exists a tame knot L in the 3-sphere S^3 such that $\pi_1(M-K)$ is isomorphic to $\pi_1(S^3-L)$. Then M is homeomorphic to S^3 .

This theorem can be viewed as a sharpening of a result of A. Connor and a converse of a theorem of L. Neuwirth. Connor's result [3] is similar to Theorem 1, but one needs to postulate that all the knot groups of M are "real" knot groups, not just those of fibered knots. Neuwirth shows (Theorem 9.2.3 of [7]) how, given a group G satisfying certain algebraic conditions, one can construct a homotopy 3-sphere with a fibered knot whose group is G; the theorem is stated in the form "...then, if the Poincaré conjecture is true, there exists a tame knot k in S^3 such that $\pi_1(S^3 - k) \approx G$ ". Our converse is that if each such group G is isomorphic to the group of a knot in S^3 , then the Poincaré conjecture is true. Combining this with Neuwirth's theorem, we have

THEOREM 2. The 3-dimensional Poincaré conjecture is equivalent to the conjecture that each group G with the properties listed below is isomorphic to the group of a tame knot in S^3 .

- (1) The commutator quotient G/[G,G] is infinite cyclic.
- (2) [G, G] is a free group of rank 2n.
- (3) G has an element t whose normal closure ("consequence") is all of G.
- (4) There is a free basis $a_1, \ldots, a_n, b_1, \ldots, b_n$ for [G, G] such that t commutes with the product of commutators $\prod_{i=1}^n [a_i, b_i]$.

In the case where n = 1, Burde and Zieschang [2] establish the above

Received by the editors October 6, 1975.

AMS (MOS) subject classifications (1970). Primary 55A25, 55A40, 57A10.

¹ Partially supported by NSF Grant GP 29430.

[©] American Mathematical Society 1976

conjecture by showing that G must be isomorphic to the group of a trefoil or figure-eight knot.

Our plan for proving Theorem 1 is to construct in the homotopy 3-sphere M a fibered knot \hat{K} with enough special properties that if L is a knot in S^3 with $\pi_1(S^3 - L) \approx \pi_1(M - \hat{K})$, then such an isomorphism preserves enough of the geometry of $M - \hat{K}$ that we can conclude that M is homeomorphic to S^3 .

Preliminaries. All spaces, subspaces, and maps considered here are polyhedral. If K is a knot in a homology 3-sphere M, and U is a regular neighborhood of K, the exterior of K, E(K), is M – int (U). There is a pair of orthogonal simple closed curves μ , λ in ∂U such that μ bounds a disk in U, and therefore generates $H_1(E(K))$, and λ is null-homologous in E(K). The curves μ and λ are unique up to orientations and ambient isotopy of ∂U . We call μ a meridian of K and λ a longitude. A simple closed curve in ∂U homologous to $p\mu + q\lambda$ is a (p,q)-cable about K. If K_1 , K_2 are knots in M such that, for some 2-sphere S, $K_1 \cap S$ is an arc α , $K_2 \cap S = K_1 \cap S$, and S separates $K_1 - \alpha$ from $K_2 - \alpha$, then the knot $K_1 \cup K_2$ – int (α) , denoted $K_1 \sharp K_2$, is the composition of K_1 with K_2 .

LEMMA. Let M be a homology 3-sphere. If K is the composition $K_1 \sharp K_2$ of fibered knots in M then K is a fibered knot. If K is a (p,q)-cable $(q \neq 0)$ about a fibered knot K_0 then K is a fibered knot.

PROOF. If $K = K_1 \sharp K_2$, we can choose regular neighborhoods such that E(K) is the sum $E(K_1) \cup E(K_2)$, where $E(K_1) \cap E(K_2) = \partial E(K_1) \cap \partial E(K_2) = A$, an annulus whose center curve is a meridian of each of K_1, K_2 . A fibration of E(K) over S^1 can be constructed by adjusting the fibrations $f_i \colon E(K_i) \to S^1$ (i = 1, 2) so that $f_1 | A = f_2 | A$.

If K_0 is fibered and K is a (p,q)-cable about K_0 , we can again explicitly construct a fibration of E(K) (or use Stallings' characterization [10] of 3-manifolds that fiber over S^1). To see the fibering of E(K), first push K into the interior of the regular neighborhood $U(K_0)$ and choose a regular neighborhood U(K) contained in int $U(K_0)$. By considering how the exterior of a (p,q)-torus knot in S^3 fibers over S^1 , we see that the manifold $W = U(K_0)$ – int U(K) fibers over S^1 with fiber a connected 2-manifold F of genus $\frac{1}{2}(p-1)(q-1)$ having (q+1) boundary components, one a longitude of K on $\partial U(K)$ and F0 components that are longitudes of F1 on F2. We next construct a new fibration for F3. The fibrations of F4 are then combined to give a fibration of F3. The fibrations of F4 with fiber a connected surface of genus F4 (F1) over F3 with fiber a connected surface of genus F3 with fiber a connected surface of genus F3 with fiber a connected surface of genus F3 or F4 (genus F3).

PROOF OF THEOREM 1. Our proof is similar to [9] so we shall omit details and refer to [9] whenever practical.

Let M be a homotopy 3-sphere and suppose M has the property that the group of each fibered knot in M is isomorphic to the group of a knot in S^3 .

By González-Acuña's theorem, there exists a fibered knot K in M. Let \hat{K} be a (1, 2)-cable about the composition $K \sharp R$ of K with a trefoil knot R. We shall show that $E(K \sharp R)$ is homeomorphic to the exterior of a knot in S^3 .

By the Lemma above, \hat{K} is a fibered knot, so there exists a knot L in S^3 with $\pi_1(M - \hat{K}) \approx \pi_1(S^3 - L)$. Let $f: E(L) \to E(\hat{K})$ be a homotopy equivalence.

The manifold $E(\hat{K})$ is the sum of a solid torus T and $E(K \sharp R)$, pasted together along an annulus A in their boundaries. For future reference, we note that each boundary component of A is a (2, 1)-cable about $K \sharp R$, so $\pi_1(A)$ does not contain an annihilator of $\pi_1(E(\hat{K}))$. As in [9, proof of Theorem 2], we can homotopically alter f so that $f^{-1}(A)$ is a finite collection B_1, \ldots, B_n of essential annuli in E(L). We show in the next three paragraphs that we may assume that n = 1 and $f | B_1$ is a homeomorphism.

Since A does not carry an annihilator of $\pi_1(E(\hat{K}))$, we have, as in [9, proof of Theorem 2, Claim 1], that each B_i separates E(L) into a solid torus V_i and the exterior W_i of a nontrivial knot. Although we do not know enough about the knot L to proceed exactly as in [9], the proofs of Claims 2 and 3 can be modified to show that the annuli B_1, \ldots, B_n can be ordered so that $W_1 \subset \cdots \subset W_n$ and $W_n \cap V_1$ is a solid torus with $(W_n \cap V_1, B_1, \ldots, B_n)$ homeomorphic to $(B_1 \times [1, n], B_1 \times \{1\}, \ldots, B_1 \times \{n\})$.

Let $g: E(\hat{K}) \to E(L)$ be a homotopy inverse of f. Then g can be homotopically adjusted so that $g^{-1}(B_1)$ is a collection A_1, \ldots, A_m $(m \ge 1)$ of essential annuli in $E(\hat{K})$. By modifying Lemma 2.3 of [9] to handle properly embedded annuli in the exterior of a cable knot, we can show that, as loops, the components of ∂A_1 are homotopic in $\partial E(\hat{K})$ to the components of ∂A . If we consider the composition $f \circ g$, we then see that f can be adjusted so that for each $i, f \mid B_i$ is a homeomorphism of B_i onto A.

Now, as in Claim 6 of [9], we can use a "binding ties" argument to reduce the number of annuli B_i , eliminating them in pairs until $n \le 1$. Since neither $\pi_1(T)$ nor $\pi_1(E(K \sharp R))$ generates $\pi_1(E(\hat{K}))$, we must have n = 1.

We complete the proof of Theorem 1 as in Claim 7 of [9]. The restriction $f_1 = f|W_1$ is a homotopy equivalence between W_1 and $E(K \sharp R)$ and maps B_1 homeomorphically onto A. Using the composite knot structure of $E(K \sharp R)$ we can (Lemma 2.3 of [9]) homotopically alter f_1 so that $f_1(\partial W_1) \subseteq \partial E(K \sharp R)$. By Theorem 6.1 of [11], W_1 is then homeomorphic to $E(K \sharp R)$. Since the proofs [1], [4], [6], [8] that composite knots have "Property P" do not depend on being in S^3 , we conclude that a homeomorphism of $E(K \sharp R)$ to W_1 extends to a homeomorphism of M to S^3 .

REFERENCES

- 1. R. H. Bing and J. M. Martin, Cubes with knotted holes, Trans. Amer. Math. Soc. 155 (1971), 217-231. MR 43 #4018a.
- 2. G. Burde and H. Zieschang, Neuwirthsche Knoten und Flächenabbildungen, Abh. Math. Sem. Univ. Hamburg 31 (1967), 239-246. MR 37 #4803.
- 3. A. C. Connor, An algebraic characterization of the 3-sphere, Manuscript. (See also: An algebraic characterization of 3-manifolds, Notices Amer. Math. Soc. 17 (1970), 266. Abstract #672-635.)

- 4. A. C. Connor, Splittable knots, Ph.D. Thesis, Univ. Georgia, Athens, Ga., 1969.
- 5. F. González-Acuña, 3-dimensional open books, Lectures, Univ. of Iowa Topology Seminar, 1974/75 (to appear).
- 6. ——, Dehn's construction on knots, Bol. Soc. Mat. Mexicana (2) 15 (1970), 58-79. MR 50 #8495.
- 7. L Neuwirth, Knot groups, Ann. of Math. Studies, no. 56, Princeton Univ. Press, Princeton, N.J., 1965. MR 31 #734.
- 8. D. Noga, Über den Aussenraum von Productknoten und die Bedeutung der Fixgruppen, Math. Z. 101 (1967), 131-141. MR 36 #2137.
- 9. J. Simon, An algebraic classification of knots in S³, Ann. of Math. (2) 97 (1973), 1-13. MR 46 #9959.
- 10. John Stallings, On fibering certain 3-manifolds, Topology of 3-Manifolds and Related Topics (Proc. Univ. Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 95–100. MR 28 #1600.
- 11. F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88. MR 36 #7146.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOWA, IOWA CITY, IOWA 52240