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AUTOMORPHISMS OF THE INTEGRAL GROUP RING OF S„

GARY L. PETERSON

Abstract. In this paper it is shown that every normalized automorphism of

the integral group ring of S„ can be written as a group automorphism

followed by conjugation by a unit in the group algebra of S„ over the

rationals.

1. Introduction. Throughout we will use Z(G) to denote the integral group

ring of a group G and 91 (2(G) to denote the group of normalized auto-

morphisms of Z(G). That is, 91 &(G) is the group of ring automorphisms of

Z(G) such that/(g) has augmentation one for all g in G. It is well known

(see [2] or [3]) that it suffices to study normalized automorphisms over

arbitrary automorphisms of Z(G).

The major purpose of this paper is to consider 91 (2(G) when G = Sn, the

symmetric group on n letters. In [2], Brown showed that Sn is an S . 9c. group

for every n = 1, 2, . . ., 10. That is, every normalized automorphism of Z(G)

can be written in the form/ = rua where a is a group automorphism, u is a

unit in Q(G) (the group algebra of G over the rationals), and ru denotes

conjugation by u when G = Sn, n = 1, . . . , 10. In this paper, it will be shown

that Sn is an S .9c. group for any positive integer n.

It should be remarked that the study of £ .9c. groups is not limited to Sn.

The reader can find several types of metabelian &. 9l. groups in [2], [4] and

[6].

2. Action on class sums. Before looking at the case G = Sn, we will need

some facts concerning the action of 91 2(G) on the class sums of a finite

group G.

If/is an element of 91 2(G) and Cg denotes the class sum of an element g

of G, then f(Cg) = Cx for some x in G ([2], [3], [6]). Thus, 91 2(G) acts as a

permutation group on the class sums of G. Further, let Q9 iG) denote the

kernel of this permutation representation. It follows that

69(G) = {t„|w is a unit in Q(G) normalizing Z(G)}

by first extending every element of G9 (G) to QiG), and then, since every

element of Q 9 iG) will fix the simple components of QiG), by applying the

Noether-Skolem Theorem.

We will make use of the following two additional results.

Lemma 2.1. Let f G 912(G) and x, y, u, v be elements of G such that
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f(Cx) = Cu andfiCy) = Cv. Then, for some g G G,

f{Cxy)  =   Cuv'-

Proof. Note that/(C) appears as a summand when fiCxCy) is written as

a linear combination of class sums. Also, f(CxC) is a linear combination of

class sums comprised of elements of the form uwvz where w, z G G. There-

fore, for some w and z in G,f(C) = Cuwv, and we are done with g = zw~l.

The second lemma is due to Brown [2].

Lemma 2.2. Let f G 91 6£(G) a«ii suppose that /(C) = Cx vv/We g anrf x

are elements of G. Then for every integer «,/(C „) = Cx». Also, it follows that

\g\ = 14
3. Symmetric groups. We will now show that Sn is an S .'31. group. In fact,

we will actually see that 91 &(Sn) =69 (Sn) for n ^ 6 which would have to

hold since every group automorphism of Sn is inner when n i= 6 ([5], Theorem

11.4.8).
We first record two results about Sn. The first result is Exercise 11.4.11(a)

of [5]. The second is a well-known result about the order of conjugacy classes

of Sn and can be found, for instance, in [1].

Lemma 3.1. Let n > 2, n =£ 6. Then an element x of Sn is a 2-cycle if and

only if \x\ = 2 and maxlx^ = 3 where y ranges over the elements of Sn.

Lemma 3.2. Let g G Sn and suppose that g is a product of disjoint /c, l-cyc/t?5,

k2 2-cycles, . . . , kn n-cycles. Then the order of Cg, Cg the conjugacy class of g,

is given by

\Cg\= «!/(*,! 1**2.2**. ..kn\nk-).

We next show

Lemma 3.3. Let f be a normalized automorphism of Z(5n) and suppose that

n > 2, n =7^ 6. Let g in Sn be a product of disjoint transpositions. Then

f(Cg) - cg-

Proof. Let / denote the number of transpositions appearing in (7._We may

assume that g has_the form g = (1, 2)(3, 4) ... (2t - 1, 2i). Let/(Cg) = Cx,

x G G. To show Cx = Cg we proceed by induction on /.

If t = 1, let w G Sn. By Lemma 2.1, we can find v in Sn such that

fiCggu) = Cxxv. Conversely, given v in S„ we can also find u in Sn satisfying

the above equation. Thus by Lemma 2.2, maxlxx"! = 3 as v runs over Sn.

Thus x is a transposition by Lemma 3.1 since \x\ = 2 by Lemma 2.2.

In the general case we have

/(C(l,2)(3,4)...(2r-3,2,-2)) =   Co,2)(3,4) ...(2r-3,2.-2)

and/(C(2r_12/)) = C(2,_12,). Hence by Lemma 2.1,

f\Cg)  =   ^( 1,2X3,4) ...(2(-3,27-2)(27-l,2()>

for some_y G Sn.

If we can show that (2t - 1, 2ty is disjoint from (1, 2)(3, 4) ... (2t - 3,

2t — 2), we will be done, so suppose this is not the case. If (2t — 1, 2ty has
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one letter in common with (1, 2) ... (2t — 3, 2t — 2), it follows that (1,

2) ... (27 - 3, 27 — 2)(27 - 1, 2ty is a product of disjoint cycles which are

transpositions and a 3-cycle. But then 3 divides \x\ which is impossible.

Next, suppose (27 - 1, 2ty has two letters in common with one transposi-

tion of (1, 2) ... (27 — 3, 27 — 2). Then x is a product of disjoint transposi-

tions andhas fewer transpositions than g does. Thus / fixes Cx and so

f(Cg) * cx.
The final possibility would be for (27 - 1, 2 7y to have one letter in

common with two different transpositions of (1, 2) ... (27 — 3, 27 — 2). But

then (1, 2) ... (27 — 3, 27 — 2)(27 — 1, 27y is a product of disjoint cycles

which are transpositions and a 4-cycle. Hence 4 divides \x\, again a contradic-

tion.

We now come to

Theorem 3.4. Sn is an S .9c. group for every positive integer n. Moreover,

91 2(5„) = G 9 iS„)for every n =£ 6.

Proof. By the results of [2], we may assume n > 2 and n ¥= 6. Let

/ G 91 2(G) and note that it suffices to show that/ ^ Q9 iG). To accom-

plish this, we set

ff-{gesm\f(ct)*ct}

and show that N is the empty set.

Suppose N is nonempty. We pick a "minimal element" g of N satisfying the

following properties:

(1) Suppose g has its largest cycle of smallest length among the elements of

N. Let h denote the length of its largest cycle.

(2) Suppose that g has the fewest number of cycles of length h among the

elements of N satisfying (1).

Note that we have h > 3 by Lemma 3.3.

Write g = Blf32 . . . Br where the /3, are disjoint cycles and 2 < | /3,|

< | Bl+l\. Also, assume that Br = (1, 2, . . . , h). Let yr = (1, 2,. . . , h - 1),

then g = /3, . . . /3,_,Yr(l, h). Also, by the minimality of g,

and by Lemma 3.3,/(C(1A)) = C(1A). Thus by Lemma 2.1

AC«) =  C/V.&-.Y,«

where a = (1, h)x for some x G Sn. Lety = /3, . . . Br_xyra. We will obtain a

contradiction by showing Cg = Cy. The proof of this is broken into the

following cases:

Case 1. If (1, h)x is disjoint from /3, . . . Br_lyr.

In this case, / must fix Cy by the minimality of g since _y has fewer cycles of

length h than g with its largest cycle of length less than or equal to h. But then

/(C) t^ /(Cj,) = Cy and so this case cannot occur.

Case 2. If (1, h)x has one letter in common with /3, . . . Br_lyr.

Suppose («',, n2, . . . , nt) is the cycle of /3, . . . f3r_lyr where the common

letter occurs. Then (1, h)x = (n, a) where a does not appear in /3, . . . /3r_,yr.
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Also, note that

(/.„ . . . , «,)(«,, a) = («„ . . . , Hj_ „ a, np . . . , «,).

If t < h — l,y would have fewer cycles of length h with its largest cycle of

length less than or equal to h. Thus by the minimality of g, Cy is fixed by/

andso/(Cg)^ Cy.

If t > h — 1, then t = h. But then, y has one more cycle of length h - 1
than g does. Thus yh has one more cycle of length h — 1 than gh does.

Therefore, by the minimality of g,

f{Cg") = <V = *»»

which is impossible.

Thus we have t = h — 1. But then>> has the same cycle structure as g, and

hence Cg = Cy.

Case 3. If (1, h)x has two letters in common with Bx . . . Br_yyr.

First, suppose that (1, h)x has two letters in common with one cycle of

fi\ ■ ■ ■ fir-rtr- Let (/.,, . . . , nt) denote this cycle and suppose (1, h)x = (n, ns)

where j < s. Then

(«„ . . . , n,){nj, ns)

= (#i„ ...,«,_„ n,, nJ+„ . .., «,)(«,, n,+„ ..., /.,_,)

where the first cycle on the right side of the above equation is taken to be the

identity wheny = 1 and s = t. Hence, y has fewer cycles of length h with its

largest cycle of length less than or equal to A. By the minimality of g, f fixes

Cy so that/(C,)* Cy.
Thus, (1, h)x must have its letters in common with two cycles of

Bi . . . /8r_,Yr. Let («,, . . . , nt) and (n\, . . . , n's) denote these cycles where

t < 5. Then i\,h)x has the form (/.,, rif) and

(«,,..., /.,)(/.;—,«;)(«,,«;)

= (/.„ ...,/.,._„«;, «;+„ ...,«;,«'„...,«;,«,.,...,«,).

If neither 5 nor / is h — 1, then>7 has one more cycle of length h — 1 than g

does. Thus, yh has one more cycle of length h - 1 than gh does. But then, by

the minimality of g, /(C*) = Cg* ̂  Cyh. Hence, either s or t is h — I and

s + t > h.

Suppose that g has k{ 1-cycles, k2 2-cycles, . . . , kh A-cycles. By Lemma

3.2,

\Cg\= n\/kx\k2\2k*...kh\hk».

If 5 = h — 1 and ? < s, then

|Cy|= ai!/(/c,!/v2!2^ . . . k,_A it - l)k,~'ik, - \y.tk'~l

■kl+]\ it + 1)*- . . . Vi' {h ~ ^-'{kh ~ l)!^-'(5 + t)).

Since \Cg\ = \Cy\, s + / = k,tkhh. But this is impossible since th > s + t.
If f = h - 1 and 5 = /> - 1,

1^1= »!/(*I!*2!2*». . . {kh_x - 1)! (A - l)**--'^ - !)!***-'(* + r)).
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Thus |C | = |C | implies s + t = kh_x(h — \)khh. But this is also impossible

since (h — \)h > s + t.

Finally, if 7 = h — 1 and s = h,

\Cy\= n\/(kx\k2\2^ . . . kh_y\ (h - l)*-(*» - 2)!A*"2(a + 7)).

Again, since \C \ = |C |, s + t = (kh - \)khh2. Once more, this is impossible

since h2 > s + 7 and hence Case 3 cannot occur.

Thus, since only Case 2 occurs and since Cg = Cy in this case, N is the

empty set and/ G 6.9(G).
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