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FIXED POINTS AND ITERATION OF A
NONEXPANSIVE MAPPING IN A BANACH

SPACE

SHIRO ishikawa

Abstract. The following result is shown. If T is a nonexpansive mapping

from a closed convex subset D of a Banach space into a compact subset of

D and x, is any point in D, then the sequence (xn) defined by xn+l

= 2~](xn + Txn) converges to a fixed point of T. As a matter of fact, a

theorem which includes this result is proved. Furthermore, a similar result is

obtained under certain restrictions which do not imply the assumption on the

compactness of T.

Throughout this paper we consider the following iterative procedure, which

is a special case of the generalized iteration method introduced by W. R.

Mann [7].

Definition. If D is a subset of a Banach space X, T is a mapping from D

into X, and xx G D, then M(xx,tn,T) is the sequence {xn}™=] defined by

xn+i = (1 - tn)xn + t„ Txn, where {7„}"=1 is a real sequence. If a point x, and

a sequence {tn}nK'=i satisfy the following three conditions:

00

(1) 2    tn  =   CO,
71=1

(2) 0 < tn < b < 1    for all positive integers n,

and

xn G D    for all positive integers n,

then xx and {7„}^°=i will be said to satisfy Condition A.

Note that if tn G [a, b] for all positive integers n and 0 < a < b < 1, then

it is obvious that the sequence {7„}^=1 satisfies (1) and (2).

These iteration methods have been investigated by Krasnosel'skil [6],

Edelstein [3], Outlaw [9], Dotson [2] and others. They showed that these

iterative methods may be used to find a fixed point of a nonexpansive mapping

T mainly in a uniformly convex Banach space or a strictly convex Banach

space, where a mapping T from a subset D of a Banach space X into X is

called a nonexpansive mapping if T satisfies the condition that || Tjc - Ty\\

< H* - j>|| for all x,yeD.

In this paper we study the iterative method for nonexpansive mappings
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without any assumption on convexity of the Banach space.

Lemma 1. Let (y,},°li be a sequence in the real numbers and let {uA,*Lx be a

sequence in a Banach space X. Then for any positive integer N,

(n *,)(!(. -,>,)
(3)

" (' - ,S 5<>" - % {(1 *')(' xt •')<»+> ~ s"4
// X is the real line and w, = 1 for all i, we have the special case

(n>.)(l,(1-^)
(   > N N-\   (■ / tV-1        \  / I        \ "v

-i-fl*-iS{U.*)(,-j5*)(1-4
Here and hereafter we agree that 2?=m and Y["=m are defined to be 0 and

1, respectively, for n < m.

Proof. When N = 1, the result is trivial. Supposing that (3) is true for some

N > 1, we have

ICU.'X'-A^K'-^}
-'*!l!{C%/')(,-,s1''K'-*'4

= ^{(i - fi s,)uN - (n' *,-)(.2 (i - *>,)}

-■s/v^i - n s,)"n + y - n«,-W+i

= -(fi *.)(J: (i - *>,) + (i - fi *i)«jv+i.
from which it follows that

{the right-hand side of (3) with N + I for N)

- (' ~ 1 *>»« -1, (Cl, *)(i - n»,)(»,+, -,»,)}
= (! ~%+i n •*,Jw/v+i + (n si)(x o _ s/Kj - f i - n ■s.W+i

= (,n/.)Cl!(,-s',»'>
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By induction this completes the proof.

Lemma 2. Let D be a subset of a Banach space X and let T be a nonexpansive

mapping from D into X. If there exist xx and {tn}™=x that satisfy Condition A and

M(xx,tn,T) is bounded, then xn — Txn converges to zero as n —> oo.

Proof. Since T is a nonexpansive mapping, we have

||jc„+1 - 7X,+1|| = ||(1 - t„)x„ + tnTxn - Txn+l\\

= \\(l-tn)(xn-Tx„)-rTx„-Txn+1\\

< (1  - Oik - Txn\\ + \\xn - Xn+\W

= (1 - tn)\\x„ - TxJ + \\x„ - ((1 - tn)x„ + tnTx„)\\

= \\x„ - TxJ.

Thus the sequence {||jc„ - 7jc„ 1!}^= i is nonincreasing and bounded below,

so lim,,^ ||jcn - TxJ exists.

Suppose that lim,^^ ||x„ - 7jt„|| = r > 0. That is, for any e > 0, there

exists an integer m such that

(5) r < \\xm+i — 7xm+/|| < (1 + e)r    for all positive integers 7.

Then since T is nonexpansive,

\\('xm+i + l ~ xm+i + \) — (1  — tm+i)(Txm+j ~ Xm+,)||

=   IM (U  ~~ *m+i)xm+i ~*~ 'tti+i * xm+i)

(°) ~vA ~ tm+i)xm+i + !m+i'xm+i) ~ U  ~~ tm+i)\'xm+i ~~ -"'rn+i') 'I

=    I I ((I  ~ lm+i)xm+i ~*~ lm+i'Xm+i) ~ Txm+j\\

<  tm+i\\xm+i ~ Txm+iW   <  'm-f-.O  + &■

Since {x„}^°=1 is bounded and {7„}^°=1 satisfies condition (1), there exists an

integer TV such that

(7) r 2   tm+i <6(M)+ 1 <r 2 tm+l
i=i i=i

where 8(M) is defined by sup{||x,- - Xj\\;0 < i,j < oo}.

Now setting s,■ = 1 - tm+i and ut = Txm+i - xm+i for all positive integers i,

we get from (6),

,   ,       llMi + l  — siui\\   =   ll*-*m+i' + l  — xm+i + \  ~ (1  ~~ lm+i)(Txm+i ~ Xm+(-)||
(°)

< tm+i(\ + e)r = (1 - s,)(l + e)r

and

N

xm+N + \ ~ xm+\   ==   2s   {((I ~ tm+i)xm+i "*" 'm+i *xm+i) ~ xm+i)
i=\

(9)V   ' N N

'   2i   lm+i\Axm+i ~ xm+i)  =   -^   (1   ~~ si)ui-
(=1 1 = 1
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Thus using Lemma 1, we have from (9), (3), (5) and (8) that

/N-\      \ II /tV-1      \   /   N \ II

(    II,   J/)lkOT+rV + l  -*«+lll   = IT   sAl   2   (1   -af,)!!,)
\l=\    / II \l=l     / \/=l / II

> (i - n s)\M\ -1' {(ftT,)(. - n ,)h« - ,„,»}

* ('" ,0, «> -1' {(. 1,•>)(■ "A > - *)(■ + *}

■*I{(j'.*)(,->5*)(1-4
since $,- = 1 — /m+, > 1 - b > 0, which implies from (4) and (7) that

N /tV-1      \-l

lkm+yv+l - xm+x || > r 2 (1 - *,■) - er(  IT s, )
i=1 \i=l      /

N /tV-1      \-l
d°) >r2 (l-^-erf  n *. )

i= 1 \i= 1     /

tV tV-1

= r 2  fm+i - £/"  II  (1 - 'm+,)~
1=1 1=1

>«5(M) + 1-er n (1 ~ tm+,T'■
7=1

Since log(l + y) < ^ for any _y e (-1, oo), we have from (2) and (7),

n' (i - tm+iyx = n' (i + tm+ln - tm+iyx)
7=1 7=1

= exp{.2 iog(i + tm+i{i - tm+iyl)j

<exp[(|iw,a-w,r1}

< exp [(1 - ft)"1   2' w]

< exp{(l -b)~l(S(M)+ Or"1}.

From this and (10) we get that

8iM)+ I - er exp {(1 - *)_1(t5(M) + l)r-1}

<   tkm+yV + l - *m+lll   < S(M)-
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Since e is an arbitrary positive number, it follows that 8(M) + 1 < 8(M). This

contradiction completes the proof.

Remark. Let T be a nonexpansive mapping from a convex set D in a

Banach space into a bounded subset of D and let (1 - t)I + 7The denoted by

Tt, where / is an identity map and 0 < 7 < 1. Then M(x{,t, T) is bounded

since it is a sequence in the convex hull of the union of T(D) and the point Xi.

Also it is clear that T."'x, - Tt"~l xt = t(Txn - xn). Therefore we have by

Lemma 2 that Tt is asymptotically regular (i.e. for any x G Z>, ||7;n+lx

- T,"x\\ -* Oasn -+ oo).

Fixed points and iterative process for compact mappings. Now we shall prove

a fixed point theorem for a nonexpansive compact mapping and show that the

iterative process M(xl:t„, T) may be used to find the fixed point.

Theorem 1. Let D be a closed subset of a Banach space X and let T be a

nonexpansive mapping from D into a compact subset of X. If there exist Xi and

{tn}n*Ll that satisfy Condition A, then T has a fixed point in D and A/(xi,7„, T)

converges to a fixed point of T.

Proof. Let D0 denote the closure of the convex hull of the union of T(D)

and the point x,. A well-known theorem of Mazur implies that D0 is compact.

The sequence M(xx,tn, T) clearly belongs to D0. From this and Condition A,

it immediately follows that {x„}^°=1 is a compact sequence in D. Hence there

is a subsequence (x }," , that converges to a point u, which obviously belongs

to D since D is closed. And it is clear that lim,^^ || Tx„ - x„ || = 0 since

Lemma 2 is applicable from the boundedness of D0.

Now since T is nonexpansive,

||7w - «|| = ||7w - Txn. + Txn. - x„. + x„ - u\\

< 2||«-*J| + ||7x„,-xJ|,

which implies that a is a fixed point of T since Iutl^oJIw - x„.|| = 0 and

lim^JIrx^-xJI =0.
Further,

lk+1 - "II   =   11(1  - 'n)xn + 'n Tx„ - u\\

= ||(1 - t„)(x„ -u) + tn(Txn - Tu)\\ < ||x„ - u||

for any positive integer n. For any e > 0 there exists an integer n0 such that

||x„o - u|| < c, so we obtain from (11) that ||x„ - w|| < e for any integer

n > n0. Therefore M(xx,tn,T) converges to u, a fixed point of T.

As an immediate consequence of Theorem 1, we have the following

corollaries.

Corollary 1. Let D be a closed subset of a Banach space X and let T be a

nonexpansive mapping from D into a compact subset of X. If there exists

7 G (0, 1) such that (1 - t)x + tTx G D for all x G D, then T has a fixed point

in D and for any Xi  G D, M(xx,t,T) converges to a fixed point of T.

Corollary 2. Let D be a closed convex subset of a Banach space X and let T



70 SHIRO ISHIKAWA

be a nonexpansive mapping from D into a compact subset of D. Then Thas a fixed

point in D and M(xx, 2_1, T) converges to a fixed point of T for any xx £ D.

Note that the first part of Corollary 2 is a special case of a fixed point

theorem of Schauder.

Corollary 2 was proved for uniformly convex spaces by Krasnosel'skiT [6]

and strictly convex spaces by Edelstein [3].

Fixed points and iterative process for noncompact mappings. Next we shall

consider the iterative process for a nonexpansive mapping without the

assumption on the compactness of T.

Let D be a subset of a Banach space X. A mapping T: D -» X with

a nonempty fixed points set F in D will be said to satisfy Condition B if there

is a nondecreasing function /: [0, oo) -» [0, oo) with /(0) = 0, /(/•) > 0 for

r £ (0, oo), such that ||x - 7jc|| > f(d(x,F)) for all x £ D, where d(x,F)

— inf{||jc — z||;z £ F). This condition is due to Senter and Dotson [10].

Theorem 2. Let D be a closed subset of a Banach space X and let T: D —> X

be a nonexpansive mapping with a nonempty fixed points set F in D. If T satisfies

Condition B and there exist xx and {t„}n*'=x that satisfy Condition A, then

Mixx,tn,T) converges to a member of F.

Proof. The theorem is trivial if xx £ F, so we assume xx £ D — F. For any

u £ F we have that \\Tx„ — u\\ < \\xn — u\\ and so we get that

(12) ||*,,+1 - u\\ = ||(1 - t„)x„ + tnTxn - u\\ < \\xn - u||

which  implies  that d(x„+x,F) < dixn,F) for all  positive integers n. The

sequence {d(x„,F)}^Lx is nonincreasing and bounded below, so there exists

limn_tood{x„,F), which we denote by r.

By the definition of /, we have

(13) \\xn-Txn\\>fidix„,F))>fir).

Since it follows from (12) that M(xx,t„, T) is a bounded sequence in D, we

have from Lemma 2 and (13) that/(r) = 0. Hence we get that

lim dixn,F) = r = 0.
77—>0O

Now we shall show that M(xl,tn,T) converges to a member of F. Since

limn^,00fi(*rt,F) = 0, for any positive integer i there exist /V, > 0 and h, £ F

such that \\xN. - w,|| < 2-', which implies from (12) that \\xn - w,|| < 2~' for

all n > Nj. We require Ni+X > Nt for all i > 0. Then we have that for any

integers i and/ such that i </,

IK - "/ll < II". - xNm\\ + \\xNm - ui+x || + ||u/+1 - xN.+2\\

+ ■■■  +  \\uj_x  -XNj\\  +  \\xNj- Uj\\

< 2"' + 2"'-1 + 2"'-1 + 2~'-2 + ■■■ + 2~J+\ + 2~J

= 3(2"'' - 2~J)
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which implies {«,-},"] is a Cauchy sequence, so there exists v such that

v = lim,^^ w, and v belongs to F since F is closed. For any e > 0 there exists

;0 > 0 such that 2~'° < 2~'e and ||w,  - v\\ < 2~'e, so we have that

||x„ - v\\ < ||x„ - uj + \\uk - v\\ < 2"'o + ||«/o - v\\< e    for all n > /\.

Therefore M(xx,tn, T) converges to the point v of F.

Corollary 3. Let D be a closed convex subset of X and let T: D —> D be a

nonexpansive mapping with a nonempty fixed points set F. If T satisfies Condition

B, then for any x, G D and any {tn)nc=l satisfying (1) and (2), M(xx,tn,T)

converges to a member of F.

If A1 is a uniformly convex Banach space and 0 < a < 7„ < b < 1 for all

integers n > 0, the analog of this corollary was obtained by Senter and

Dotson [10].

The author wishes to express his sincere thanks to Professor T. Kawata,

Professor S. Koizumi and the referee for their valuable suggestions regarding

the improvement of the paper.
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