PSEUDOCOMPACTNESS PROPERTIES

SAMUEL BROVERMAN1

ABSTRACT. A topological extension property is a class of Tychonoff spaces $\mathfrak P$ which is closed hereditary, closed under formation of topological products and contains all compact spaces. If X is Tychonoff and $\mathfrak P$ is an extension property, there is a space $\mathfrak P X$ such that $X\subseteq \mathfrak P X\subseteq \beta X, \mathfrak P X\in \mathfrak P$ and if $f\colon X\to Y$ where $Y\in \mathfrak P$ then f admits a continuous extension to $\mathfrak P X$. A space X is called $\mathfrak P$ -pseudocompact if $\mathfrak P X=\beta X$. In this note it is shown that if $\mathfrak P$ is an extension property which contains the real line (e.g., the class of realcompact spaces), X is $\mathfrak P$ -pseudocompact and Y is compact, then $X\times Y$ is $\mathfrak P$ -pseudocompact. An example is given of an extension property $\mathfrak P$, a $\mathfrak P$ -pseudocompact space X and a compact space Y such that $X\times Y$ is not $\mathfrak P$ -pseudocompact.

1. Introduction. If \mathfrak{P} is a class of completely regular, Hausdorff spaces which contains all compact spaces such that T is closed under the formation of topological products and closed subspaces, then \mathfrak{P} is called a topological extension property. Such classes may also be familiar as the almost-fitting epireflective subcategories of the category of completely regular, Hausdorff spaces. If X is a completely regular space and \mathfrak{P} is an extension property then there is a space $\Re X$ such that $X \subseteq \Re X \subseteq \beta X$, $\Re X \in \Re$, and every continuous map from X to a space in \mathcal{P} admits a continuous extension to $\mathcal{P}X$. The basic references for this material are [5] and [9]. In what follows, a space will mean a completely regular, Hausdorff space. Given an extension property 9 and a space X, we call X \mathscr{P} -pseudocompact if $\mathscr{P}X = \beta X$. The class of \mathscr{P} -pseudocompact spaces is denoted by 9'. Woods [9] introduced this notion of 9pseudocompactness and investigated the class 9'. If 9 is the class of realcompact spaces then \mathfrak{I}' is the class of pseudocompact spaces. In Theorem 2.2 of [9], it is shown that the class \mathfrak{P}' , for an arbitrary extension property \mathfrak{P} , satisfies many of the properties enjoyed by the class of pseudocompact spaces. It is well known that the topological product of a pseudocompact space with a compact space is pseudocompact (see 9.14 of [4]). It is also known (see Proposition 2.5 of [8]) that a space X is pseudocompact if and only if E(X), the projective cover of X, is pseudocompact. In [9], the question is raised of whether or not the class \mathfrak{P}' satisfies the above two conditions for an arbitrary

Received by the editors December 24, 1975.

AMS (MOS) subject classifications (1970). Primary 54D60, 54C20.

Key words and phrases. Stone-Čech compactification, extension property, realcompact, pseudocompact.

¹ This research was partially supported by a scholarship from the National Research Council of Canada.

[©] American Mathematical Society 1976

extension property \mathfrak{P} . In this paper we show that the answer to both questions is, in general, no; however for a large class of extension properties \mathfrak{P} the answer to the first question is yes.

The notation will follows that of [4], and N will denote the natural numbers.

2. Pseudocompactness properties.

- 2.1. EXAMPLE. Let \mathfrak{P} be the class of spaces all of whose connected components are compact. Clearly \mathfrak{P} is an extension property. It is also easy to see that $\mathbf{R} \in \mathfrak{P}'$ (where \mathbf{R} is the real line). But $E(\mathbf{R})$ is extremally disconnected and noncompact. In particular, $E(\mathbf{R}) \in \mathfrak{P}$ as $E(\mathbf{R})$ is totally disconnected, hence connected components of $E(\mathbf{R})$ are points. But by Theorem 2.2 of [9], we must have that $E(\mathbf{R}) \notin \mathfrak{P}'$ as $E(\mathbf{R})$ is noncompact. This answers the second question mentioned in the introduction.
- 2.2. EXAMPLE. In what follows, let \mathfrak{P} denote the class of all spaces X such that every countable subset of X has compact closure in X. Such spaces are called \aleph_0 -bounded spaces, and it is shown in [7] that \mathfrak{P} is an extension property and furthermore that if X is a space then $\mathfrak{P}X$ consists of all points in βX which are in the closure of a countable subset of X. Clearly any separable space is in \mathfrak{P}' , hence $N \in \mathfrak{P}'$. We show that $N \times \beta D \notin \mathfrak{P}'$ where D denotes the discrete space of cardinality \aleph_1 .

Let $\{0,1\}$ denote the two-point discrete space. Let X be the Σ -space of $\{0,1\}^{\aleph_1}$, i.e., X consists of those points in $\{0,1\}^{\aleph_1}$ which have at most countably many coordinates equal to 1. Then $X \in \mathcal{P}$. For each $i \in N$ define

$$A_i = \{ p \in \{0,1\}^{\aleph_1} : |\{k: \pi_k(p) = 1\}| \leq i \}$$

where π_k is the kth projection map from $\{0,1\}^{\aleph_1}$ to $\{0,1\}$. Clearly each A_i is compact, and if $A = \bigcup_{i \in N} A_i \subseteq X$ then A is dense in X. Thus $A \notin \mathfrak{P}'$. For by Theorem 2.2 of [9], if $A \in \mathfrak{P}'$ then $X \in \mathfrak{P}'$, hence $X \in \mathfrak{P} \cap \mathfrak{P}'$ and X must be compact, which is not true. Since $|A_i| = \aleph_1$ for every $i \in N$, we have that A_i is the continuous image of βD . Thus $A = \bigcup_{i \in N} A_i$ is the continuous image of $N \times \beta D$. Since $A \notin \mathfrak{P}'$ we have that $N \times \beta D \notin \mathfrak{P}'$ by Theorem 2.2 of [9]. This answers question one.

2.3. THEOREM. Suppose that \mathfrak{P} is an extension property such that $\mathbf{R} \in \mathfrak{P}$, i.e., \mathfrak{P} contains all realcompact spaces. Then if $X \in \mathfrak{P}'$ and Y is compact then $X \times Y \in \mathfrak{P}'$.

PROOF. By 2.2(e) of [9], every member of \mathfrak{P}' is pseudocompact. Let $X \in \mathfrak{P}'$ and let Y be compact. Then $X \times Y$ is pseudocompact. Hence, by Theorem 2.1 of [3], $\beta(X \times Y) = \beta X \times \beta Y = \beta X \times Y$. Then by Proposition 3.1 of [2],

$$\mathfrak{P}(X \times Y) = \mathfrak{P}X \times \mathfrak{P}Y = \mathfrak{P}X \times Y = \beta X \times Y \quad (\text{as } X \in \mathfrak{P}') = \beta (X \times Y),$$

i.e., $X \times Y \in \mathcal{P}'$. The condition that $\mathbf{R} \in \mathcal{P}$ is not necessary for the above result. If \mathcal{P} is the class of compact spaces then $\mathbf{R} \notin \mathcal{P}$, but since \mathcal{P}' consists of

all Tychonoff spaces, \mathfrak{P}' satisfies the condition that if $X \in \mathfrak{P}'$ and Y is compact, then $X \times Y \in \mathfrak{P}'$. \square

- 3. 0-dimensional pseudocompactness properties. If X is 0-dimensional (i.e., has a base of clopen sets), let $\beta_0 X$ denote the Banaschewski maximal 0dimensional compactification of X (see [1]). The space $\beta_0 X$ is the Stone space (maximal ideal space) of the Boolean algebra of clopen subsets of X. If \mathcal{P}_0 is a class of 0-dimensional spaces which contains {0, 1}, is closed hereditary and preserved under the formation of products (an epireflective, almost fitting subcategory of the category of 0-dimensional spaces), then \mathcal{P}_0 is called a 0dimensional extension property. If X is 0-dimensional and \mathcal{P}_0 is a 0-dimensional extension property, then there is a space $\mathcal{P}_0 X$ such that $X \subseteq \mathcal{P}_0 X \subseteq \beta_0 X$, $\mathcal{P}_0 X \in \mathcal{P}_0$, and any continuous map from X to a space in \mathcal{P}_0 admits a continuous extension to $\mathfrak{P}_0 X$. This space can be produced in a way analogous to the construction of $\Re X$ in [5]. The concept of \Re_0 -pseudocompactness is analogous to that of \mathcal{P} -pseudocompactness defined above. Since $N \times \beta D$ is 0dimensional, in view of Example 2.2 above, question one asked in the introduction has a negative answer when applied to 0-dimensional extension properties. However, Example 2.1 above will not work in the 0-dimensional case of question two. The following example shows that the answer to question two with respect to 0-dimensional extension properties is negative.
- 3.1. Example. Let $\omega_1^* = \omega_1 \cup \{\omega_1\}$ denote the one-point compactification of ω_1 , the totally ordered space of countable ordinals. Let \mathfrak{P}_0 be the class of all 0-dimensional, \aleph_0 -bounded spaces. Then $X = N \times \omega_1^* \in \mathfrak{P}_0'$ (if $p \in \beta_0 X$ and p is not in the closure of $N \times \{\omega_1\}$, then p is in the closure of a complement of a neighborhood of $N \times \{\omega_1\}$ which must be countable). For each $i \in N$ let f_i be a bijection between D, the discrete space of cardinality \aleph_1 , and the isolated points of ω_1^* , and let $f_i^* : \beta D \to \omega_1^*$ be the Stone extension of f_i . Then f_i^* is perfect and irreducible (i.e., no proper closed subset of βD maps onto ω_1^*). Thus $\bigcup_{i \in N} f_i : N \times \beta D \to N \times \omega_1^*$ is perfect and irreducible. By Lemma 2.14 of $[\aleph]$, $N \times \beta D = E(N \times \omega_1^*)$. However, Example 2.2 above shows that $N \times \beta D \notin \mathfrak{P}_0'$ (we showed $N \times \beta D \notin \mathfrak{P}'$ where \mathfrak{P} is the class of \aleph_0 -bounded spaces, but since $N \times \beta D$ is extremally disconnected we have $\beta_0(N \times \beta D) = \beta(N \times \beta D)$ and, hence, $\mathfrak{P}_0(N \times \beta D) = \mathfrak{P}(N \times \beta D) \subseteq \beta(N \times \beta D)$ by Example 2.2).

We can sharpen the result of Theorem 2.3 when restricting ourselves to 0-dimensional extension properties.

3.2 THEOREM. Let \mathfrak{P}_0 be a 0-dimensional extension property not all of whose members are pseudocompact. Let $X \in \mathfrak{P}_0'$ and let Y be compact and 0-dimensional. Then $X \times Y \in \mathfrak{P}_0'$.

PROOF. Since not every member of \mathfrak{P}_0 is pseudocompact it follows that some members of \mathfrak{P}_0 contain a *C*-embedded, hence closed, copy of *N* (see 1.21 and 3B3 of [4]). Thus $N \in \mathfrak{P}_0$. By Theorem 2.2 of [9], every member of \mathfrak{P}'_0 is pseudocompact.

Let $X \in \mathcal{P}'_0$ and Y be compact and 0-dimensional. Then $X \times Y$ is pseudocompact. Hence by Theorem 2.2 of [2],

$$\beta_0(X \times Y) = \beta_0 X \times \beta_0 Y = \beta_0 X \times Y.$$

Then by Proposition 3.1 of [2],

$$\mathcal{P}_0(X \times Y) = \mathcal{P}_0 X \times \mathcal{P}_0 Y = \mathcal{P}_0 X \times Y = \beta_0 X \times Y = \beta_0 (X \times Y),$$

hence $X \times Y \in \mathcal{P}'_0$. \square

Corollary 2.10 of [9] shows that if \mathfrak{P}_0 is a 0-dimensional extension property, then either \mathfrak{P}_0 is the class of compact 0-dimensional spaces or \mathfrak{P}'_0 does not properly contain the class of pseudocompact 0-dimensional spaces. The question is then raised of whether or not the corresponding statement for (not necessarily 0-dimensional) extension properties holds. If \mathfrak{P} is the class of $I \times N$ -compact spaces (if E is a space, then X is E-compact if X can be embedded as a closed subset of E^m for some cardinal number m; see [6]), then \mathfrak{P} is an extension property. But clearly \mathfrak{P} contains noncompact spaces (e.g., $N \in \mathfrak{P}$). Also \mathfrak{P}' properly contains the class of pseudocompact spaces. This follows from 2.2(e) of [9] and the fact that $\mathbf{R} \in \mathfrak{P}'$, and \mathbf{R} is not pseudocompact. Thus the statement for arbitrary extension properties corresponding to 2.10 of [9] is not valid.

REFERENCES

- 1. B. Banaschewski, Über nulldimensionale Räume, Math. Nachr. 13 (1955), 129-140. MR 19, 157.
 - 2. S. Broverman, The topological extension of a product, Canad. Math. Bull. (to appear).
- 3. Z. Frolik, The topological product of two pseudo-compact spaces, Czechoslovak Math. J. 10 (85) (1960), 339-349. MR 22 #7099.
- 4. L. Gillman and M. Jerison, Rings of continuous functions, Univ. Ser. in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #6994.
- 5. H. Herrlich and J. Van der Slot, *Properties which are closely related to compactness*, Nederl. Akad. Wetensch. Proc. Ser. A 70 = Indag. Math. 29 (1967), 524-529. MR 36 #5898.
- 6. S. Mrówka, Further results on E-compact spaces. I, Acta Math. 120 (1968), 161-185. MR 37 #2165.
- 7. R. G. Woods, Some N₀-bounded subsets of Stone-Čech compactifications, Israel J. Math. 9 (1971), 250-256. MR 43 #3997.
- 8. _____, Ideals of pseudocompact regular closed sets and absolutes of Hewitt realcompactifications, General Topology and Appl. 2 (1972), 315-331. MR 47 #7698.
 - 9. ——, Topological extension properties, Trans. Amer. Math. Soc. 210 (1975), 365-385.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MANITOBA, WINNIPEG, MANITOBA, CANADA R3T 2N2