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HOPF INVARIANTS
FOR REDUCED PRODUCTS OF SPHERES

HANS JOACHIM BAUES

Abstract. Let S„ be the mth reduced product complex of the even

dimensional sphere 5". Using 'cup'-products, James defined a Hopf in-

variant homomorphism

Hm- vmn-ASm-\ )^Z

such that Hj is the classical Hopf invariant. Extending the result of Adams

on H£ we determine the image of H£. Partial calculations were made by

Hardie and Shar.

1. Hopf invariants and higher order Whitehead products. In [9] James

proved, that the reduced product complex S£, of the sphere S" is homotopy

equivalent to the loop space S2S"' + 1. The complex S^ has a natural CW

decomposition

S"x = Sn u e2n u . . . U emn u . . .

the mn skeleton of which is denoted by S^, S" = S". In this paper we will be

concerned with the homomorphism

"m '■ ""mn - 1 ( $m - 1  ) "~* ^

where n is even and m > 2. This homomorphism is a generalization due to

James [10] of Steenrod's definition of the Hopf invariant [21]: Let a G

Trmn_xiS£_x); one can choose generators ax, am^x and x of dimension n,

im - l)n and mn respectively in the integral cohomology of the complex

$m-\ ua Emn. Then the Hopf invariant H^iot) is defined to be the integer for

which a, u am_x = //^(a)x. H" is the classical Hopf invariant [8].

Let the element [/„]"* G Tmn-X{S£,_x) be given by an attaching map of the

cell em" in S£- This element is an mth order Whitehead product [16], [6]. For

example [/J2 is the Whitehead product [/„, /'J of a generator in G TrniS"). It is

well known that H2([i„, /„]) = 2 and more generally H^([inf) = m; see §3.

On the other hand we have H2ian) = 1 for the Hopf elements an G

v2n-iiS"), n = 2, 4, 8 [8] and im //2" = 2Z if n ^ 2, 4, 8 by the celebrated

theorem of Adams on Hopf invariants [2]. Moreover Toda showed in [23, p.

175] that for a prime number p, there exist ap G ir2p_xiS2_x) (and a2 = o2 if

p = 2) such that H2iap) = 1. We will prove that the elements ap and the Hopf

elements a2, a4, a8 are the only elements of Hopf invariant one.

Theorem A.
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Z,        if m = 2 and n = 2, 4, 8,

im Hm = j Z,        if n = 2 a/W w a prime number,

ml,     otherwise.

Acknowledgement. It follows easily from (1.3), (c), (ii) of [6] that im H£

= mZ if n > 4 and m is an odd prime. Using this result Shar showed that

im H£ = mZ for n > 4 and w > 3 [19], [20]. Thus we only have to prove

im H2 = mZ in case m is not a prime. Using our method of proof one can

also deduce Shar's result. Our proof is nevertheless different from Shar's

proof, since in the case of the reduced product of a 2-sphere we cannot use

Lemma 2.1 in [19].

From the exact sequence of the pair (S£,, S^_x) we have a short exact

sequence:

(1.1) 0^ 7tmn(S"x, s:_,) ^Ttmn-AS"m-i ) ^^„(5n + 1 )-»0.

There is a generator < of trmniSnx, S^_x) as Z with 3< = [/„]"■. Therefore

t(a) is a nontrivial element if 0 < H^icx) < m. For example '(ap is the

well-known element of order// in tt2piS3) and t(an) is the nontrivial suspen-

sion of the Hopf element. By Theorem A, this method will not yield further

nontrivial elements in the homotopy groups of spheres. On the other hand the

short exact sequence above immediately implies the following corollary of

Theorem A:

(1.2) Corollary. In case im H£ = mZ, we have wmn_ ,(£,£_,) = Z ©

7TmniS" + l) and [7„]m generates the infinite cyclic summand.

Using this corollary we will determiVie the order of the Whitehead products

['„. ['J"""1] e *■ jCS-.j), where i„ G 77„(^_2) is a generator and m > 2.

That w[/„, [/Jm '] = 0, is a special case of the Jacobi identity for the higher

order Whitehead products (Hardie [5], [6]). Moreover Hardie has proven in

[6] that [i2, [72]m_1] = 0 if m is a prime. In fact:

(1.3) Corollary. [in, [i„]m~]] = 0 if and only if n = 2 and m is a prime; and

[in, [i„]m~l] is an element of order m otherwise.

If m = 3 this is a well-known result on the iterated Whitehead product [7„,

[in, 7J] G TT3n-2(S"); cf. [15], [13]. Shar has proven the result of Corollaries

(1.2) and (1.3) in case n > 4 [19]. Compare also Hardie's result (0.2)(b) in [7].

Proof of (1.3). We consider the exact sequence

j 3

^mn-li^m-l)   ~* mmn- 1 i^m- 1' ^m-2 )   ~^* ^mn-li^m-l)-

Using the Nakaoka Toda formula [5], [6] we have/([7Jm) = m[in, co^_,]. The

relative Whitehead product [7„, «,£_,] generates the infinite cyclic part of

*mn-XiSl_x, S£_2), see 1.4,p. 262 in [11]. Since d[i„, <_,] = ±[i„, [/J—'],
the result follows using (1.2).

2. The chain algebra of QS^. We obtain our result on the Hopf invariant

H£ by examining Hmn_2iQ,S^_x), with integral coefficients. Let the homo-

morphism

r: ^-i(^_, ) « 77m„_2(^_, )- Hmn_2iQS"m_x )
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be given by composition with the Hurewicz homomorphism as in [17]. We

will prove:

Theorem B. There is a homomorphism T: Hmn_2(QSn\_x) —* Z such that

T tr ■ im\ — I P<     if m = pv is a power of a prime p,

[ I,      otherwise.

(2.1) Corollary. If m is not a power of a prime number, then im H*\ = mXL.

If m = pv is a power of the prime p, then im H£ = mXL or im H^\ = pv~lZ.

Proof of (2.1). Let a E 7rm„_1(S,^_1) be given such that im //£ = //^(a)Z.

By use of the exact sequence (1.1) we obtain Trmn_xiSn\_x) = Z © T (T a

torsion group) and a generates the infinite cyclic summand. Since [in]m

= ka + t it E T) we have m = kH^ia). On the other hand k is a divisor of

Tr([in]m), and so the corollary follows from Theorem B.

For the proof of Theorem B we need the chain algebra of QS^ in the sense

of [1]. Let A = AiS^) = A[xx, x2, . . . ] be the unitary ring, which is freely

generated by the elements xx, x2, . . . and graded by deg(x,) = ni - 1. We

define a differential d: A -> A on generators by

(2'2) d"-%(jh~r

For products ab in A we define diab) = ida)b + (— l)kaidb), where k =

deg(a). Let Am = A[xx, . . . , xm] be the chain subalgebra of A generated by

xx, . . . , xm. Then we obtain from [3] and [14]:

(2.3) Lemma. There exists an isomorphism ©: H^iAm~\ d)^HtiQS^_x),

such that ®{dxm} = r([in]m). Here dxm is a cycle in Am~x representing the

nonzero homology class [dxm).

(2.4) Proof of Theorem B. Let Ck be the kth chain group of the chain

complex Am~\ k>0. Let XicCnm_, be generated by monomials in Am~l

with at most i factors, .'= 1, 2, 3. Let T, c C„m_, be generated by monomials in

Am~i with more than i factors. By (2.2) we obtain restrictions dj and d"

(/'= 1, 2) of d such that the following diagram commutes:

Cnm-\        =        Xx   ®      Yx

4 [d[ e d'

Cnm-2       =       X2   ®      Y2

4 1*7 © <<2

Qm-3        =        X3   ®     Y^

Since Xx = 0 we obtain by (2.3) the isomorphism

0- ■: Hnm_2 iQS^_, ) -> ker rff © ker J2"/im d'v

A simple computation using (2.2) shows that ker d'{ a Z and is generated by

dxm/gm, where gm = gcd{(T')IO < i < m). Let T be given by composition of

0_1 with projection on ker d". Then we have 7Y([.„]m) = gm by (2.3). One

can check that gm = p if m = pv is a power of the prime p and that gm = 1

otherwise. This completes the proof of Theorem B.
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3. Proof of Theorem A. Let a G ",TOI_,(S^_1) and let the complex K

= S£_x ua Emn be obtained by attaching an oriented mn cell Emn to 5^_,

by a map/of homotopy class a. Using the result of Serre on the cohomology

of S£,, we can choose generators a, G //"'(A"), where 1 < 7 < m, such that

(1) a\ = i\a„

cf. Theorem 18 on p. 488 in [18]. Let the Hopf invariant H^(a) be defined by

use of these generators. In case a = [in]m and K = S„ this implies H^([in]m)

= m.

For the proof of Theorem A we need only show that the assumption

im H2 = pv~lZ leads to a contradiction if m = p" is a prime power with

v > 1; see (2.1). Assuming this, it follows that there exists an element a such

that H2(a) = pc~[. Thus in K we have

(2) a, U am_x = pv~1x.

Multiplying by (w — 1)!, we obtain from (1):

(3) a? = axu(m- \)\am_x = (p» - 1 )!/,-'* = pv\p~lx.

Thus if q = pv~\ we have qp = m, and

(4) flj--(af)'- (*!a,)'- (?!)'<.

Therefore we obtain af1 = /^x, where

(5) r,-(/>-M )"'(/>•! )/»"'•

Let a,^ G H2q(K, Zp) and jcp G //2m(AT, Zp) be generators, which correspond

to a  and x in case of integral coefficients. Since r ^ 0 modp, we have:

(6) (aqj))p=rpxp^Q.

The following arguments generalize the method of Nakaoka and Toda on

p. 12 in [15] and the method of Hardie on p. 247 in [6]: Since the suspension

2 of a higher order Whitehead product is trivial, there exists a mapping p:

~2S2_X —> 52*+l which induces an isomorphism of cohomology in dimension

267+1. Let g = p ° (2/), where / G a. Then we have an extension p:

I.K -± S2q + l Ug E2m+] = Kg such that p induces isomorphism of cohomol-

ogy in dimension 2q + 1 and 2m + 1.
We examine the cases p odd and p = 2 separately. If p is odd, it follows

from (6) that the Steenrod pth power

(7> FM^) = (V)^°-

By the naturality of the reduced power operation (using p) and the fact that

they commute with suspension, we obtain from (7) an isomorphism:

(8) P«: //2'+1 (A,, Zp) -» H2m+l(Kg, Zp).

Hence the mod/? Hopf invariant of g is nontrivial. Now by Theorem 5 of [13]

this is only the case if q = 2 and so we have the required contradiction.

On the other hand if p = 2, it follows from (6) that the Steenrod square

(9) W(aqa) = (a{/a)2=r2x2^0.
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Since the suspension 2+: T2m_xiS2q) -»tr2miS2g+l) is an epimorphism by the

Freudenthal theorem, we have a mapping g: S2m~' —> S2q such that 2f and g

are homotopic. We also obtain a homotopy equivalence t: 2/^ —> Kg. By the

naturality of the Steenrod squares (using p and t) and the fact that they

commute with suspension we obtain from (9) an isomorphism:

(10) Sq2":H2q{K-g,Z2)^H2miK-g,Z2).

Hence the Hopf invariant H2q(g) is odd. Since this is only the case if m = 2,

4, 8 we have the required contradiction for m = 2° and v > 3; cf. 4.5 in [22]

and [2]. Thus we still have to find a contradiction in case m = 4 and m = 8.

In case m = 4we assume that there exists an a such that //42(a) = 2. By

use of the exact sequence (1.1), iia) E trsiS3) is a nontrivial element. Using

the exact sequence in the proof of (1.3), we know thaty'(a) is nontrivial and

thus /.(a) is an element of filtration 3. Since James has proven that all

elements of 778(S'3) have filtration less than 3, we have a contradiction; cf. row

3, p. 309 in [12].
In case m = 8we consider the following diagram:

S2 ->SS
P

where p is a mapping which induces an isomorphism of homology in

dimension 8.

In [4] we prove that there exists an extension p of p such that

(11) P.([.2J4) = 35['8>''8J   e".5(S8)-

If we assume that im H2 = 4Z, then there exists an a E 77,5(S72) such that

H2i<x) = 4 and such that [z2]4 = 2a + t; compare the proof of (2.1). Since

7Tl6iS3) = Z6, the element / has order at most 3, using the exact sequence

(1.1). From Toda's book [23] we know that wx5iSs) = Z + Z120, and the Hopf

element a8 generates the infinite cyclic summand. Let a be the generator of

Z120. Then we have [;g, zg] = ±(2ag - 15a); see 5.16 on p. 50 in [23]. Now

there exist w, a, b E Z such that p^f) = 40 • wo and p^ia) = aos + bo. Thus

we obtain from (11):

(12) ±35(2a8 - 15a) = 2(aa8 + ba) + 40 • wa.

Since 35 • 15^2/3 + 40w mod 120 for b, w G Z, we have the required con-

tradiction and the proof of Theorem A is complete.

As pointed out by the referee in case m = 8a filtration argument is as well

available, since the reduced product filtration of the generator of 7r16(5'3, 2) is

2.
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