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The author wishes to present this paper in memory of his wife, Myung Mi Myung, whose

untimely death occurred during the preparation of this paper. She was a trained mathematician

and unselfishly encouraged the author during her illness and assisted in the preparation of the

manuscript.

Abstract. Let A be a finite-dimensional, flexible, Lie-admissible algebra

over a field $ of characteristic # 2. Let S be a subalgebra of A~ and H be

a Cartan subalgebra of S. It is shown that S is a subalgebra of A if and only

if HH C S.

For an algebra A, denote by A~ the algebra with multiplication [x,y]

= xy — yx defined on the vector space A. If A~ is a Lie algebra then A is said

to be Lie-admissible. If A is, in addition, a finite-dimensional flexible algebra

over a field $ then a Cartan subalgebra of A~ has played an important role

for the structure of the algebra A [1], [3]. Let 5 be a subalgebra of the Lie

algebra A~. In this note, we give a condition in terms of a Cartan subalgebra

of 5 that S be a subalgebra of A.

Theorem. Let A be a finite-dimensional, flexible, Lie-admissible algebra over

a field $ of characteristic ¥= 2. Let S be a subalgebra of the Lie algebra A~ and

H be a Cartan subalgebra of S. Then S is a subalgebra of A if and only if

HH C S.

Proof. One can assume that <I> is algebraically closed. Since A is flexible

and Lie-admissible, the mapping adx: a —* [a,x] is a derivation of A for all

x G A; that is, [a,be] = [a,b]c + b[a,c] for all a, b E A. Let x,y & A. Then

the flexible law {x,y,y) + (y,y,x) = 0 implies yiyx) = (xy)y — [x,y ]. Hence

we get

l!*>,v].J>] = {xy)y ~ {yx)y - y{xy) + yiyx) = (xy)y - 2yixy) + yiyx)

= 2(xy)y - [x,y2] - 2yixy) = 2[xy,y] - [x,y2] = 2[x,y]y - [x,y2].

Therefore, we have [jc,^]^ = ji[x,y ] + [[x,y],y]).

Let Sa = {x G S\x(ndh - a{h)I)n = Q,h G H, for some n > 0}.Then

since H is a Cartan subalgebra of S, we have the root space decomposition
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S = 2a Sa of S relative to H, where HQ = S and [Sa,H] C Sa. For a ^ 0,

we first show that SaH Q S. Since a =£ 0, there exists an element 7? G // such

that a(/i) # 0. Then ad/i: Sa -» Sa is surjective. For, if [x,h] = 0 for some

x ¥= 0 in 5a then x(ad/i — a(h)I)n = 0 implies that a(h)"x = 0 and so

a(h) = 0. Now, for every element x G Sa,we have

[x,h]h = id*,A2] + [[*,*],*]) G [5,////] + [[5,//],//] C S.

Since [5a,/z] = Sa, this implies 5a/i CS. Let k be any element in H. Then we

have

[x,h]k = [x,hk] - h[x,k] = [x,hk] - [h,[x,k]] - [x,k]h

G [S,HH] + [H,[S,H]] + [Sa,H]h £ S + Sah C S.

Again, since [Sa,h] = .Sa, this implies SaH Q S for a ¥= 0. Also, S0H = HH

C 5 and so we have that SH C 5.

For any a # 0, let Ti be an element in H such that ct(h) ¥= 0. Let

a: G Sa,y G S. Then

y[x,h) = [x,yh] - [x,y]h G [S,SH] + SH Q S.

Since [Sa,/i] = Sa, this shows that SSa Q S for a ^ 0. From S50 = 5//

C 5, we have that SS Q S, as required.

If S is a subalgebra of A~ which is classical in the sense of Seligman [4],

then, in view of [3, Corollary 3.4], the theorem enables us to give a condition

that 5 is a Lie algebra under the multiplication in A, so that a classical Lie

algebra is imbedded into A as a subalgebra. An element x. G A is called

nilpotent if x is power-associative and x" = 0 for some n > 0. We also say

that a subset M of A is nil if every element of M is nilpotent. The following is

an immediate consequence of the theorem and [3, Corollary 3.4].

Corollary 1. Let S be a subalgebra of A' which is classical and H be a

classical Cartan subalgebra of S. Then S is a Lie algebra under the multiplication

in A if and only if HH C S and H is nil in A.

In particular, if A is power-associative and A~ is semisimple over $ of

characteristic 0, it is shown that A is a nilalgebra [2] and turns out to be a Lie

algebra [1], [3]. The original proof of this requires that 4> is algebraically

closed; however, if $ is not algebraically closed, it can be extended to its

algebraic closure. Therefore, we have

Corollary 2. Let $ be of characteristic 0 and let S be a semisimple

subalgebra of A~. Suppose that every element of S is power-associative. Then S is

a Lie algebra under the multiplication in A if and only if S contains a Cartan

subalgebra H such that HH C S.

The author is indebted to the referee for many invaluable suggestions which

strengthened the original version of the theorem.
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