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eduardo h. zarantonello1

Abstract.    It is proved that a mapping 7": X -* X* from a topological real

vector  space  into  its  dual  satisfies  the  inequality  (Ty,x~) < (Tx,x}'

■ (Ty,yy    if and only if it is the restriction of a positively homogeneous

subdifferential operator.

The Cauchy-Schwarz-Buniakovsky inequality for a nonnegative definite real

quadratic form says

,  . / \l/2/ sl/2
(U 2 ayxtyj < (2 ajjXjXj)    (2 a^jj)    ,

where positive roots are taken. Usually an absolute value sign is placed around

the left-hand member, to obtain only an apparently stronger inequality. If x

denotes the row vector of components xx,x2, ...,xn, and x* = Tx the

column-vector of components 2 OyXj, 2 a2jxj> ■ ■ ■> 2 anjxj> tnen (0 can De

written in the form

(2) <7>,jc> < (Tx,x),/2(Ty,y)]/2,

the angular brackets indicating the matrix theoretical product of a column-

vector and a line-vector. In this form the CSB-inequality appears as a relation

satisfied by a mapping T: X —> X* from a linear space X into its dual X*.

Therefore, it is natural to ask what such a relation means for the operator T,

or, in other words, what can be said of an operator T satisfying the CSB-

inequality. In posing such a question nothing should a priori be assumed of T

beyond that which is strictly necessary to make the inequality meaningful.

Thus, T will just be a mapping, possibly many valued, from X into X*

satisfying the CSB-inequality (2), taken to mean

(3) <y*,x) < (x*,xf2(y*,y)l/2,

for any x and y in D(T) and any choice of x* and y* in Tx and Ty

respectively, and where the square root is construed to mean that the quantity

under the square root sign as well as the result of the operation is a

nonnegative number. Let us recall in passing that the domain of definition of
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a many-valued (or set-valued) mapping T is the set D(T) = {x|Tx =£ 0}.

Easily constructed examples of nonlinear many-valued operators satisfying (2)

indicate that none of this generality is superfluous (see [6, Theorem 9.1]).

Our purpose here is to point out that the CSB-inequality does not lead to a

new category of objects but to a known class of operators, the positively

homogeneous subdifferential operators, and in consequence, that the CSB-

inequality sits squarely in the midst of convexity. So, surprisingly, convexity

rather than linearity (or "quadraticity") is the context in which the CSB-

inequality should be placed. Particular instances of this situation are known.

Besides the linear positive selfadjoint operators a conspicuous case is offered

by the "duality mapping" of a Banach space into its dual, defined by

Jx = {x G X*\(x*,x> = ||x* || = ||x|| }. This operator, of frequent appear-

ance in convexity and monotonicity theory, satisfies the CSB-inequality and is

the subdifferential of half the norm squared [1], [2]. Inequalities formally

identical to (2), often going under the same name but of quite a different

nature, are obtained by assigning to the angular brackets meanings other than

that of the bilinear form effecting the pairing of two dual spaces. Our results,

of course, do not apply to them. For instance, such is the case for the CSB-

inequality appearing in R. Tapia's papers on the characterization of inner

product spaces [4], [5], where the operator is the identity mapping and the

brackets denote a sort of generalization (nonbilinear) of the inner product.

We begin by describing the terms and concepts needed for our discussion.

Let Ibea locally convex, Hausdorff, topological, real vector space, and let

X* be its dual (i.e. the set of all continuous linear functional endowed with a

topology compatible with the duality between X and X*). Given in X an

everywhere defined, lower semicontinuous, convex function k(x), with values

on the extended real line (—oo,+oo], we say that a vector u* G X* is a

subgradient of k at x, if

(4) k(y) - k(x) > (u*,y - x>,    Vy G X.

When not empty the set of subgradients of k at x is a closed convex set in X*;

it is called the "subdifferential" of k at x, and is denoted dk(x). The mapping

from X into X*: x —> dk(x), is "the subdifferential operator" associated to A:.

Subdifferential operators are a subclass of the so-called "cyclically monotone

operators". There are mappings T: X -> X* satisfying the inequalities

<x*,x, - x0> + <x*,x2 - xx) + ••■ + <x*_,,x„ -x„_,>

(5) +<x*,x0-x„> < 0,

V/i > 0, Vx0, x,, ..., x„ G D(T), Vx* G Tx,, i = 0, 1, ..., n.

If A1 is a Banach space the subdifferentials coincide with the maximal

cyclically monotone mapping, that is, with cyclically monotone operators

admitting no proper cyclically monotone extensions (cf. [3, Theorem 3']). In

other words, since any cyclically monotone operator can be extended to a

maximal one, a mapping T: X -» X* of a Banach space into its dual is

cyclically monotone if and only if there is a lower semicontinuous convex

function k(x) such that Tx C dk(x), Vx G D(T).
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An operator T is said to be positively homogeneous if T(tx) — tTx for

/ > 0. As we have already mentioned, it is the class of positively homogeneous

subdifferential mappings that is of significance in relation to the CSB-

inequality, for the CSB-inequality plays for them the role that (5) played for

subdifferential mappings in general. The precise result is the following

Theorem. A mapping T: X —> X* from a locally convex topological real vector

space into its dual satisfies the CSB-inequality if and only if it is the restriction of

a positively homogeneous subdifferential operator. Or equivalently, the CSB-

inequality holds if and only if there is a lower semicontinuous convex function k(x),

positively homogeneous of degree two, such that

(6) Tx C dk(x),    Vx G D(T).

In such a case k(x) = \{x*,x), Vx G D(T), Vx* G Tx.

Proof. Assume first that T satisfies the CSB-inequality, and define the real

valued function

(7) *(*)= sup {t(y*,x)-(t2/2)(y*,y)}.
y<ED(T),y*eTy,t^0

As the supremum of a class of affine functions k(x) is a lower semicontinuous

convex function; it is also apparent that k(x) is positively homogeneous of

degree two. If x G D(T) and x* G Tx, then the triplet x, x*, t = 1, is a

possible choice competing for the supremum in the definition of k, and hence

k(x) > {-(x*,x). On the other hand

$<**,*> - k(x) = inf U<**,*> + (t2/2)(y*,y) - t(y*,x)},
ySD(T).y* CTy,t>0

and since the geometric mean is not larger than the arithmetic one,

$<**,*> - k(x) > inf t       {t(x*,x)l/2(y*,y)]/2 - t(y*,x)} > 0,
y£D(T),y* ETy,t>0

by the CSB-inequality. Therefore k(x) = £0*,je>, Vx G D(T), Vx* G Tx.

In particular, |<x*, x> does not depend on the choice of x* in Tx, and without

ambiguity we can write k(x) = \(Tx,x> for x G D(T). Next we see that any

x* G Tx is a subgradient of k. To this end we must show that

(8) k(y) - k(x) > (x*,y - x>,    Vy G X,

that is, in view of what has already been proved, that

sup{/<z*,^> - (t2/2)(z*,z} - $<**,*> - <x*,y - x)} > 0,

z G X, z* G Tz, t > 0,

which is obvious since the expression in braces vanishes for z = x, z* = x*,

t = 1. Thus, Tx C dk(x), Vx G D(T).

We must also verify that 9&(x) is positively homogeneous of degree one. If

x* G 3A:(x), then k(y) - k(x) > (x*,y - x>, Vy G X, whence replacing y

by t~xy, t > 0, and multiplying by t2,
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k(y) - k(tx) > (tx*,y - tx),    Vy G X,

that is, tx* G dk(tx), and so, tdk(x) C 3A:(/x), Vx G X, t > 0. This relation

is reversed by multiplying by /"' and replacing / and x by t~x and tx

respectively, so dk(tx) = tdk(x), t > 0. Thus we have completed the proof

that the CSB-inequality is sufficient for T to be the restriction of a positively

homogeneous subdifferential operator, as well as the last part of the theorem.

To establish necessity we show that any positively homogeneous subdifferential

mapping T satisfies the CSB-inequality. This we do by means of inequalities

(5), which T, as a subdifferential mapping, satisfies. We take any two points x

and y in D(T) and any two of their respective images x* and y*, and for any

positive integer m set

= j (i + l)x, 0 < i < m - 1,

I (2m - i)y,       m < i < 2m - 1,

+ _j(/+l)x*, 0<i<m-l,

*'   ~\(2m- i)y*,      m < / < 2m- 1.

Clearly, x* G Tx, by the positive homogeneity of T. With this choice of points

(5) yields

(x* + 2x* + • • • + (m — l)x*,x) + (mx* ,my — mx;

-(my* +(m- \)y* + • • • + 2y*,y) + (y*,x - y) < 0,

that is,

\m(m - l)<x*,x> + m2(x*,y - x) - \(m + 2)(m - l)</,^>

+ (y*,x-y) < 0,

whence dividing by m1 and letting m —» oo,

0 > !<**,*> + (x*,y - x> - \(y*,y) = <x*,y) - J<**,*> " J<^*^>-

By writing ty and /y* in place of y and /*, as we may, and letting t approach

zero we obtain <x*,x> > 0, and similarly (y*,y) > 0. Finally the substitu-

tion x -> ;~'x,7 -> (y, x* -» '"'x*,^* -» (y*> yields

0>(/,y)-Jr2(x*,.)-l/V^

from which the CSB-inequality follows by observing that the supremum of the

right-hand side is (x*,y) - (x*,x}l'2(y*,y)1'2. This brings the proof to an

end.
Remark. If the notation Tx C d{(Tx,x> is allowed to mean that there is a

l.s.c. convex function k(x) such that k(x) = j<Tx,x) and Tx C dk(x), Vx

G D(T), the conclusion may be drawn that the CSB-inequality is equivalent

to the subdifferential relation Tx C 3j(Tx,x>.
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