THE Q-TOPOLOGY, WHYBURN TYPE FILTERS AND THE CLUSTER SET MAP

ROBERT A. HERRMANN

ABSTRACT. We use nonstandard topology and the Q-topology to characterize normal, almost-normal, regular, almost-regular, semiregular spaces. The cluster [resp. θ -cluster] set relation is used to characterize regular, almost-regular [resp. strongly-regular] spaces. The Whyburn [resp. Dickman] filter bases are characterized and it is shown that the cluster [resp. θ -cluster] set relation restricted to the domain of the Whyburn [resp. Dickman] filter bases is an essentially continuous [resp. strongly θ -continuous] map iff the space is Hausdorff [resp. Urysohn].

1. **Introduction.** This paper has three major purposes. First, we investigate the Q-topology on an enlargement *X of a topological space X as introduced by Robinson [9] and show, among other results, that the Q-closure of a point or set monad is the θ -monad [6]. Moreover, using the Q-topology and the point or set monad, we characterize regular, semiregular, almost-regular [10], normal and almost-normal [11] spaces by means of a collection of highly analogous statements.

Fuller [4] defines a topology on the set of all clustering filters on X and using the lower semifinite topology shows that the cluster set map is continuous iff X is locally compact. Employing a different topology on the set of all converging filters, Wyler [13] shows that the convergence of a filter on a Hausdorff space X is a continuous map iff X is regular. We use that standard part [resp. θ -standard part] relation, which can be considered the cluster [resp. θ -cluster] set map, and show that, from the nonstandard viewpoint, regular [resp. almost-regular, strongly-regular] spaces are characterizable by similar statements involving the inverse of this relation. Further, by considering the near-standard [resp. θ -near-standard] points and employing the induced Q-topology, we show that the cluster [resp. θ -cluster] set relation is a continuous map iff X is Hausdorff [resp. Urysohn].

In [12], Whyburn introduces the concept of a filter base being directed toward $A \subset X$ and uses this concept to characterize perfect (not necessarily continuous) maps. Dickman [2], [3] modifies Whyburn's definition and introduces the concept of a filter base almost-converging to $A \subset X$. Among our final results, we show that a filter base is directed toward [resp. almost-converges to] $A \subset X$ iff its nucleus satisfies a nonstandard condition analo-

Presented to the Society, January 24, 1976; received April 23, 1975.

AMS (MOS) subject classifications (1970). Primary 54J05; 54D99; Secondary 02H25.

Key words and phrases. Q-topology, Whyburn filters, Dickman filters, regular, almost-regular, strongly-regular, semiregular, normal, almost-normal, cluster set map, θ -cluster set map, directed toward, almost-convergent to.

gous to the criterion for compactness [resp. quasi-H-closedness].

Throughout this paper, we let $\mathfrak{N} = (\mathfrak{A}, \in, \operatorname{pr}, \operatorname{ap})$ be the standard settheoretic structure constructed by Machover and Hirschfeld [8] and, as usual, assume that all standard objects are elements of \mathfrak{A} . Even though some of the results only require $\mathfrak{M} = (\mathfrak{M}, \mathfrak{M}, \mathfrak{M})$ to be an enlargement, it is convenient to assume that the extension \mathfrak{M} is κ -saturated, where κ is any cardinal larger than the cardinality of \mathfrak{M} . In the usual manner [7], [8], [9] we let \mathfrak{L} be a first order language with equality and the usual assortment of abbreviations which formally describes \mathfrak{M} . Also we do not distinguish between the formal constant, relation and operator symbols in \mathfrak{L} and the corresponding objects in \mathfrak{M} . We assume that the reader is familiar with the concepts and methods associated with nonstandard topology [7], [8], [9]. We use much of the notation found in [8].

2. The Q-topology. For a topological space (X, τ) , the Q-topology on *X , denoted by ${}^{\mathfrak{T}}$, is the topology generated by $\{{}^*A|A\in{}^*\tau\}$ as a base. Recall that if $A\in{}^*\mathfrak{A}$, then ${}^*A=\{p|[p\in{}^*\mathfrak{A}]\}$. If $A\in{}^*\tau$, then *A is said to be *-open. If $B\in{}^{\mathfrak{T}}$, then B is said to be Q-open, etc. We let $\mu(p)$ and $\mu(A)$ be the point and set monad [9] and define

$$\begin{split} &\mu_{\alpha}(p) = \bigcap \{ *(\operatorname{int}_{X}\operatorname{cl}_{X}G) | p \in G \in \tau \}, \\ &\mu_{\alpha}(A) = \bigcap \{ *(\operatorname{int}_{X}\operatorname{cl}_{X}G) | A \subset G \in \tau \}, \\ &\mu_{\theta}(p) = \bigcap \{ *(\operatorname{cl}_{X}G) | p \in G \in \tau \}, \\ &\mu_{\theta}(A) = \bigcap \{ *(\operatorname{cl}_{X}G) | A \subset G \in \tau \} \end{split}$$

to be the α and θ point and set monads respectively.

For many properties of the Q-topology not mentioned in this paper, we refer the reader to [1], [9]. In particular, Button [1] has shown that the Q-topology preserves much of the structure of τ and, indeed, (*X, \mathfrak{I}) is discrete iff (X, τ) is discrete.

THEOREM 2.1. If nonempty $\mathcal{G} \subset \tau$, then Nuc \mathcal{G} is Q-open.

PROOF. If \mathcal{G} does not have the finite intersection property, then $\operatorname{Nuc}\mathcal{G} = \emptyset$. Assume that \mathcal{G} has the finite intersection property and let \mathcal{G} be the open filter generated by \mathcal{G} . Luxemburg's Theorem 2.1.6 [7] holds for any filter on any meet-semilattice of sets [5]. Hence $\operatorname{Nuc}\mathcal{G} = \bigcup \{*E | [E \in ^*\mathcal{G}] \land [*E \subset \operatorname{Nuc}\mathcal{G}]\}$.

COROLLARY 2.1.1. For each $p \in X$ and $A \subset X$, the monads $\mu(p)$, $\mu_{\alpha}(A)$, $\mu_{\alpha}(p)$, $\mu_{\alpha}(A)$ are Q-open.

REMARK. In [1], Button obtains 2.1 by using a considerably more elaborate technique.

Clearly, if \mathcal{G} is an open filter on X, then every infinitesimal *element in \mathcal{G} is *-open. Indeed, we have a converse to this assertion.

THEOREM 2.2. Let \mathscr{F} be a filter base on X. If each infinitesimal *element in \mathscr{F} is *-open, then $\operatorname{Nuc} \mathscr{F} = \operatorname{Nuc} \mathscr{G}$, where $\mathscr{G} = \{G | [G \in \tau] \land [G \in \mathscr{F}]\}$.

PROOF. Since \mathfrak{F} is a filter base, then there exists an infinitesimal *element in \mathfrak{F} . Thus, it follows by transfer that $\mathfrak{G} = \{G | [G \in \tau] \land [G \in \mathfrak{F}]\} \neq \emptyset$. Clearly, Nuc $\mathfrak{F} \subset \text{Nuc } \mathfrak{G}$. Now let $F \in \mathfrak{F}$ and $\mathfrak{C} = \{E | [E \in {}^*\tau] \land [E \in {}^*\mathfrak{F}] \land [{}^*E \subset {}^*F]\}$. Using saturation and Luxemburg's Theorem 2.7.3(c) [7], which also holds for filter bases, we have that there exists an open $G \in \mathfrak{F}$ such that $G \subset F$. Consequently, Nuc $\mathfrak{G} \subset \text{Nuc } \mathfrak{F}$ and the result follows.

Clearly, for $A \subset X$, *(cl_XA) is *-closed. Hence $\mu_{\theta}(p)$ and $\mu_{\theta}(A)$ are Q-closed. Of course, ns (*X) = $\bigcup \{\mu(p) | p \in X\}$ is Q-open.

THEOREM 2.3. For each $p \in X$ [resp. $A \subset X$], the monad $\mu_{\theta}(p) = \operatorname{cl}_{*X}(\mu(p))$ [resp. $\mu_{\theta}(A) = \operatorname{cl}_{*X}(\mu(A))$].

PROOF. We only show the first assertion, the second being similar. Let $p \in X$. Since $\mu(p) \subset \mu_{\theta}(p)$, then $\operatorname{cl}_{*X}(\mu(p)) \subset \mu_{\theta}(p)$. Assume that there exists $q \in \mu_{\theta}(p)$ and $q \notin \operatorname{cl}_{*X}(\mu(p))$. Now there exists $E \in {}^*\tau$ such that $q \in {}^*E$ and ${}^*E \cap \mu(p) = \emptyset$. Saturation implies that there exists $G \in \tau$ such that $p \in G$ and ${}^*E \cap {}^*G = \emptyset$. Hence ${}^*E \cap {}^*(\operatorname{cl}_X G) = \emptyset$ by transfer. However, $q \in \mu_{\theta}(p)$ implies ${}^*E \cap {}^*(\operatorname{cl}_X G) \neq \emptyset$ and the result follows.

Since X is regular [resp. almost-regular [10]] iff $\mu(p) = \mu_{\theta}(p)$ [resp. $\mu_{\alpha}(p) = \mu_{\theta}(p)$] for each $p \in X$ [6], then it follows that a space X is regular [resp. almost-regular] iff $\mu(p)$ [resp. $\mu_{\alpha}(p)$] is Q-closed for each $p \in X$. Also, it is easy to show that a space X is normal [resp. almost-normal [11]] iff $\mu(A) = \mu_{\theta}(A)$ [resp. $\mu_{\alpha}(A) = \mu_{\theta}(A)$] for each closed $A \subset X$. Hence a space X is normal [resp. almost-normal] iff $\mu(A)$ [resp. $\mu_{\alpha}(A)$] is Q-closed for each closed $A \subset X$.

REMARK. Button [1], using a different technique, also gives the Q-open and Q-closed characterizations for regular and normal spaces.

In [6], we give some nonstandard characterizations for semiregular spaces. Using the Q-topology, we obtain another characterization. Let τ_s be the topology generated by the set of all regular-open subsets in X and \mathfrak{T}_s its associated Q-topology.

THEOREM 2.4. A space (X, τ) is semiregular iff $\mu(p) \in \mathcal{T}_s$ for each $p \in X$.

PROOF. For the necessity, let (X, τ) be semiregular. Then $\mathfrak{T}_s = \mathfrak{T}$. Thus applying 2.1.1, we have that $\mu(p) \in \mathfrak{T}_s$ for each $p \in X$.

For the sufficiency, let $\mu(p) \in \mathfrak{T}_s$. Since $*\tau_s$ is a base for \mathfrak{T}_s and $p \in \mu(p)$, then it follows that there exists $E \in *\tau_s$ such that $p \in *E \subset \mu(p) \subset \mu_{\alpha}(p)$. Let G be any open set such that $p \in G$. Then the sentence in \mathfrak{L} ,

$$\exists x[[x \in \tau_s] \land [p \in X] \land [x \subset G]],$$

holds in \mathfrak{N} by transfer. Consequently, since we are dealing with filter bases, we have that $\mu_{\alpha}(p) \subset \mu(p)$. Thus $\mu(p) = \mu_{\alpha}(p)$. This implies that (X, τ) is semiregular [6].

3. The cluster set map. As is well known if \mathfrak{F} is a filter base on X, then St [Nuc \mathfrak{F}] is the cluster set for \mathfrak{F} , where for $W \subset {}^*X$, St $[W] = \{p | [p \in X] \land [\mu(p) \cap W \neq \emptyset]\}$. Recall that a set $W \subset {}^*X$ is nuclear if there exists $\mathfrak{F} \subset \mathfrak{P}(X)$ such that $W = \text{Nuc }\mathfrak{F}$. Hence "St" restricted to ns (*X) is essentially the cluster set map for filter bases on X. Of course, in this case "St" may be considered a map from ns (*X) into X iff X is Hausdorff. A space (X, τ) is

called strongly-regular if for closed $F \subset X$ and $p \in X - F$ there exist G, H $\in \tau$ such that $p \in G$, $F \subset H$ and $\operatorname{cl}_X G \cap \operatorname{cl}_X H = \emptyset$. Observe that completely regular implies strongly-regular implies regular.

Definition 3.1. For each $W \subset {}^*X$, let $\operatorname{St}_{\theta}[W] = \{p | [p \in X] \land [\mu_{\theta}(p)]\}$ $\cap W \neq \emptyset$] and $\operatorname{ns}_{\theta}(^*X) = \bigcup \{\mu_{\theta}(p) | p \in X\}$. Notice that if \mathcal{F} is a filter base, then St_{θ} [Nuc \mathfrak{F}] is the set of all θ -cluster points [3] for \mathfrak{F} . Also, " St_{θ} " is a map from $ns_{\theta}(^*X)$ into X iff X is Urysohn [6] (i.e. for distinct $p, q \in X$ there exist neighborhoods N_p , N_q such that $\operatorname{cl}_X N_p \cap \operatorname{cl}_X N_q = \emptyset$).

THEOREM 3.1. Let (X, τ) be Hausdorff and St: ns $(*X) \to X$. Then:

- (i) X is regular iff $\operatorname{St}^{-1}[F] = \mu(F) \cap \operatorname{ns}({}^*X)$ for each closed $F \subset X$. (ii) X is almost-regular iff $\operatorname{St}^{-1}[F] = \mu_{\alpha}(F) \cap \operatorname{ns}({}^*X)$ for each regularclosed $F \subset X$.

PROOF. (i) For the necessity, let closed $F \subset X$ and $q \in \operatorname{St}^{-1}[F]$. Then St (q) = p implies that $q \in \mu(p)$ and $\mu(p) \cap {}^*F \neq \emptyset$. Hence $p \in F$. Thus $\mu(p) \subset {}^*G$ for each open $G \supset F$. Consequently, $q \in \mu(F) \cap \operatorname{ns}({}^*X)$ implies that $\operatorname{St}^{-1}[F] \subset \mu(F) \cap \operatorname{ns}(^*X)$. Now assume that X is regular and q $\in \mu(F) \cap \text{ns } (*X)$. Then $q \in \mu(p)$ for some $p \in X$. Assume that $p \notin F$. Then there exist disjoint $G, H \in \tau$ such that $p \in G$ and $F \subset H$. Thus $\mu(p) \cap {}^*H = \emptyset$. However, this implies the contradiction that $q \notin \mu(F)$. Consequently, St $[\mu(p)] = p \in F$ and the necessity follows.

For the sufficiency, let closed $F \subset X$ and $p \notin F$. Then $\operatorname{St}^{-1}(p) = \mu(p) \subset \operatorname{ns}({}^*X)$ and $\operatorname{St}^{-1}[F] = \mu(F) \cap \operatorname{ns}({}^*X)$. Observe that $\mu(p) \cap {}^*F = \emptyset$. Hence

$$\emptyset = \operatorname{St}^{-1}[F \cap \{p\}] = \operatorname{St}^{-1}[F] \cap \operatorname{St}^{-1}(p)$$

= $\mu(F) \cap \operatorname{ns}({}^{*}X) \cap \mu(p) = \mu(F) \cap \mu(p)$,

Thus there exist disjoint $G, H \in \tau$ such that $p \in G$ and $F \subset H$.

(ii) Observe that if $F \subset X$ is regular-closed in X, then

$$\operatorname{St}^{-1}[F] \subset \mu(F) \cap \operatorname{ns}(^*X) \subset \mu_{\alpha}(F) \cap \operatorname{ns}(^*X).$$

The result follows in the same manner as in (i) since the operator "int $_X$ cl $_X$ " preserves disjointness for open sets.

Clearly, a strongly-regular T_1 space is Urysohn. Of course, since a stronglyregular space is regular, then in a strongly-regular space $X, F \subset X$ is closed iff $\operatorname{St}_{\theta}[*F] = F$. The following result is obtained in the same manner as is Theorem 3.1.

THEOREM 3.2. Let X be Urysohn. Then X is strongly-regular iff $St_{\theta}^{-1}[F]$ $= \mu_{\theta}(F) \cap \operatorname{ns}_{\theta}(^*X)$ for each closed $F \subset X$.

4. Whyburn and Dickman filter bases. In [12], Whyburn says that a filter base \mathfrak{F} on X is directed toward $A \subset X$ if every filter base \mathfrak{G} stronger than \mathfrak{F} has a cluster point in A. Dickman [3] modifies Whyburn's definition and says that a filter base \mathcal{F} on X is almost-convergent to $A \subset X$ if every filter base \mathcal{G} stronger than \mathfrak{F} has an almost-cluster point in A (i.e. $\operatorname{St}_{\theta}[\operatorname{Nuc}\mathfrak{G}] \cap A \neq \emptyset$). We call a filter base F a Whyburn [resp. Dickman] filter base if F is directed toward [resp. almost-convergent to some $A \subset X$.

DEFINITION 4.1. A set $W \subset {}^*X$ is A-compact [resp. θA -compact] for $A \subset X$ if $W \subset \bigcup \{\mu(p) | p \in A\}$ [resp. $\{\mu_{\theta}(p) | p \in A\}$].

THEOREM 4.1. Let \mathfrak{F} be a filter base on X. Then the following statements are equivalent.

- (i) For each open cover \mathcal{C} of A, we have that $\operatorname{Nuc} \mathfrak{T} \subset \bigcup \{ *G | G \in \mathcal{C} \}$ [resp. $\{ *(\operatorname{cl}_{Y} G) | G \in \mathcal{C} \}$].
 - (ii) Nuc \mathcal{F} is A-compact [resp. θ A-compact].
- (iii) For each open cover \mathcal{C} of A there exists a finite subcover \mathfrak{D} , such that $\operatorname{Nuc} \mathfrak{F} \subset \bigcup \{*D|D \in \mathfrak{D}\}\ [resp.\ \{*(\operatorname{cl}_X D)|D \in \mathfrak{D}\}].$
- (iv) For each open cover \mathbb{C} of A there exists a finite subcover \mathbb{G} and an $F \in \mathbb{G}$, such that $F \subset \bigcup \{D | D \in \mathbb{G}\}$ [resp. $\{cl_X D | D \in \mathbb{G}\}$].

PROOF. We only prove the first conclusions since the second follow in a similar manner.

- (i) \rightarrow (ii). Assume that $q \in \operatorname{Nuc} \mathfrak{F}$ and $q \notin \bigcup \{\mu_{\theta}(p) | p \in A\}$. Then for each $p \in A$ there exists some open neighborhood G such that $q \notin {}^*G$. Thus $\mathcal{C} = \{G | [G \in \tau] \land [q \notin {}^*G]\}$ is an open cover of A such that $\operatorname{Nuc} \mathfrak{F} \oplus \bigcup \{{}^*G | G \in \mathcal{C}\}$.
- (ii) \rightarrow (iii). Assume that there exists some open cover \mathcal{C} of A such that for no finite $\mathfrak{D} \subset \mathcal{C}$ do we have that $\operatorname{Nuc} \mathfrak{T} \subset \bigcup \{ *D | D \in \mathfrak{D} \}$. Now there exists internal $E * \in \mathfrak{T}$ such that $*E \subset \operatorname{Nuc} \mathfrak{T}$ and

$$*E - \bigcup \{*D|D \in \mathfrak{N}\} \neq \emptyset$$

for any finite $\mathfrak{D} \subset \mathcal{C}$. For if we assume that

$$*E - \bigcup \{*D|D \in \mathfrak{D}\} = \emptyset$$

for some nonempty finite $\mathfrak{D} \subset \mathcal{C}$, where $|\mathfrak{D}| = n$, then the sentence in \mathfrak{L}

$$\exists x[[x \in \mathfrak{F}] \land [x \subset D_1 \cup \cdots \cup D_n]],$$

(iii) \rightarrow (iv). Simply let E be the infinitesimal *element which is contained in * \mathfrak{F} . Then the sentence in \mathfrak{L} ,

$$\exists x [[x \in \mathfrak{F}] \land [x \subset \bigcup \{D | D \in \mathfrak{D}\}]],$$

holds in *M; hence in M by transfer.

(iv) \rightarrow (i) is obvious.

COROLLARY 4.1.1. A filter base \mathcal{F} on X is Whyburn [resp. Dickman] iff $\operatorname{Nuc} \mathcal{F} \subset \operatorname{ns} (*X)$ [resp. $\operatorname{Nuc} \mathcal{F} \subset \operatorname{ns}_{\theta} (*X)$].

COROLLARY 4.1.2. A filter base \mathcal{F} on X is directed toward [resp. almost-converges to] $A \subset X$ iff Nuc \mathcal{F} is A-compact [resp. θA -compact].

REMARK. The reader may wish to compare Theorem 4.1 with the known

results that a set $A \subset X$ is compact [resp. quasi-H-closed relative to X] iff *A is A-compact [9] [resp. θA -compact [6]].

Recall that a map $f: X \to Y$ is strongly θ -continuous at $p \in X$ if for every open neighborhood N of f(p) there exists some open neighborhood G of p such that $f[\operatorname{cl}_X G] \subset N$. Since in the Q-topology $\mu(p)$ is open and $\operatorname{cl}_{*X}(\mu(p)) = \mu_{\theta}(p)$ for each $p \in X$, then the next result follows easily and compares nicely with the results of Fuller [4] and Wyler [13].

THEOREM 4.2. Let $\operatorname{ns}({}^*X)$ [resp. $\operatorname{ns}_{\theta}({}^*X)$] carry the topology induced by the Q-topology on *X . Then $\operatorname{St:ns}({}^*X) \to X$ [resp. $\operatorname{St}_{\theta}: \operatorname{ns}_{\theta}({}^*X) \to X$] is a continuous [resp. strongly θ -continuous] map iff X is Hausdorff [resp. Urysohn].

REFERENCES

- 1. R. W. Button, Monads for regular and normal spaces (to appear).
- 2. R. Dickman, α -perfect mappings and almost-convergence (preprint).
- 3. R. Dickman and J. Porter, θ -perfect and θ -absolutely closed functions (preprint).
- 4. R. V. Fuller, A characterization of local compactness, Proc. Amer. Math. Soc. 37 (1973), 615-616. MR 47 #5825.
- 5. R. A. Herrmann, Nonstandard topological extensions, Bull. Austral. Math. Soc. 13 (1975), 269-290.
 - **6.** The θ and α -monads in general topology (to appear).
- 7. W. A. J. Luxemburg, A general theory of monads, Applications of Model Theory to Algebra, Analysis and Probability (Internat. Sympos., Pasadena, Calif., 1967), Holt, Rinehart and Winston, New York, 1969, pp. 18–86. MR 39 #6244.
- 8. M. Machover and J. Hirschfeld, Lectures on non-standard analysis, Lecture Notes in Math., vol. 94, Springer-Verlag, Berlin and New York, 1969. MR 40 #2531.
 - 9. A. Robinson, Non-standard analysis, North-Holland, Amsterdam, 1966.MR 34 #5680.
- 10. M. K. Singal and S. P. Arya, On almost-regular spaces, Glasnik Mat. Ser. III 4 (24) (1969), 89-99. MR 39 #4804.
- 11. ——, Almost normal and almost completely regular spaces, Glasnik Mat. Ser. III 5 (25) (1970), 141-152. MR 43 #1111.
- 12. G. Whyburn, Directed families of sets and closedness of functions, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 688-692. MR 32 #435.
- 13. O. Wyler, A characterization of regularity in topology, Proc. Amer. Math. Soc. 29 (1971), 588-590. MR 43 #6865.

DEPARTMENT OF MATHEMATICS, U.S. NAVAL ACADEMY, ANNAPOLIS, MARYLAND 21402