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THE Q-TOPOLOGY, WHYBURN TYPE FILTERS
AND THE CLUSTER SET MAP

ROBERT A. HERRMANN

ABSTRACT. We use nonstandard topology and the Q-topology to character-
ize normal, almost-normal, regular, almost-regular, semiregular spaces. The
cluster [resp. f-cluster] set relation is used to characterize regular, almost-
regular [resp. strongly-regular] spaces. The Whyburn [resp. Dickman] filter
bases are characterized and it is shown that the cluster [resp. §-cluster] set
relation restricted to the domain of the Whyburn [resp. Dickman] filter bases
is an essentially continuous [resp. strongly §-continuous] map iff the space is
Hausdorff [resp. Urysohn].

1. Introduction. This paper has three major purposes. First, we investigate
the Q-topology on an enlargement *X of a topological space X as introduced
by Robinson [9] and show, among other results, that the Q-closure of a point
or set monad is the §-monad [6]. Moreover, using the Q-topology and the point
or set monad, we characterize regular, semiregular, almost-regular [10], normal
and almost-normal [11] spaces by means of a collection of highly analogous
statements.

Fuller [4] defines a topology on the set of all clustering filters on X and using
the lower semifinite topology shows that the cluster set map is continuous iff
X is locally compact. Employing a different topology on the set of all
converging filters, Wyler [13] shows that the convergence of a filter on a
Hausdorff space X is a continuous map iff X is regular. We use that standard
part [resp. f-standard part] relation, which can be considered the cluster [resp.
f-cluster] set map, and show that, from the nonstandard viewpoint, regular
[resp. almost-regular, strongly-regular] spaces are characterizable by similar
statements involving the inverse of this relation. Further, by considering the
near-standard [resp. #-near-standard] points and employing the induced Q-
topology, we show that the cluster [resp. #-cluster] set relation is a continuous
map iff X is Hausdorff [resp. Urysohn].

In [12], Whyburn introduces the concept of a filter base being directed
toward 4 C X and uses this concept to characterize perfect (not necessarily
continuous) maps. Dickman [2], [3] modifies Whyburn’s definition and intro-
duces the concept of a filter base almost-converging to A C X. Among our
final results, we show that a filter base is directed toward [resp. almost-
converges to] A C X iff its nucleus satisfies a nonstandard condition analo-
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gous to the criterion for compactness [resp. quasi-H-closedness).

Throughout this paper, we let 9 = (U, €, pr, ap) be the standard set-
theoretic structure constructed by Machover and Hirschfeld [8] and, as usual,
assume that all standard objects are elements of Q. Even though some of the
results only require *on = (*a,* €, *pr,*ap) to be an enlargement, it is
convenient to assume that the extension *9W is k-saturated, where x is any
cardinal larger than the cardinality of 9. In the usual manner [7], [8], [9] we
let £ be a first order language with equality and the usual assortment of
abbreviations which formally describes 9. Also we do not distinguish between
the formal constant, relation and operator symbols in £ and the corresponding
objects in M. We assume that the reader is familiar with the concepts and
methods associated with nonstandard topology [7], [8], [9]. We use much of the
notation found in [8].

2. The Q-topology. For a topological space (X, 7), the Q-topology on *X,
denoted by 9, is the topology generated by {*4|4 € *7} as a base. Recall that
if A €*q, then *4 = {p|[p €*U] A [p €*A4]}. 1f 4 € *1, then *4 is said
to be *-open. If B € 9, then B is said to be Q-open, etc. We let u(p) and u(A4)
be the point and set monad [9] and define

u(p) = N{*(inty cly G)|p € G € 7},
p,(4) = N{*(inty cly G)|4 C G € 7},
pe(p) = N{*(cly G)|p € G € 1},
pe(4) = N{*cly G)lA C G € 1)

to be the a and # point and set monads respectively.

For many properties of the Q-topology not mentioned in this paper, we refer
the reader to [1], [9]. In particular, Button [1] has shown that the Q-topology
preserves much of the structure of 7 and, indeed, (*X,¥) is discrete iff (X, 7)
is discrete.

THEOREM 2.1. If nonempty § C 7, then Nuc§ is Q-open.

PrROOF. If § does not have the finite intersection property, then Nuc§ = &.
Assume that § has the finite intersection property and let ¥ be the open filter
generated by . Luxemburg’s Theorem 2.1.6 [7] holds for any filter on any
meet-semilattice of sets [5]. Hence Nuc§ = U{*E|[E €*F] A [*E
C Nucd]}.

COROLLARY 2.1.1. Foreachp € X and A C X, the monads p(p), p(A), pe(p)
p,(A4) are Q-open.

REMARK. In [1], Button obtains 2.1 by using a considerably more elaborate
technique.

Clearly, if 6 is an open filter on X, then every infinitesimal *element in § is *-
open. Indeed, we have a converse to this assertion.

THEOREM 2.2. Let F be a filter base on X. If each infinitesimal *element in §
is *-open, then NucF = Nuc 8, where § = {G|[G € 1] A [G € F]}.
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PRrOOF. Since F is a filter base, then there exists an infinitesimal *element in
9. Thus, it follows by transfer that § = {G|[G € 1] A [G € F]} # . Clear-
ly, NucF C Nuc§. Now let F € Fand @ = {E|[E € *1] A [E €*F] A [*E
C *F]}. Using saturation and Luxemburg’s Theorem 2.7.3(c) [7], which also
holds for filter bases, we have that there exists an open G € ¥ such that
G C F. Consequently, Nuc§ C Nuc% and the result follows.

Clearly, for A C X, *(clyA) is*-closed. Hence py(p) and py(A4) are Q-
closed. Of course, ns (*X) = U{u(p)|p € X}is Q-open.

THEOREM 2.3. For eachp € X [resp. A C X], the monad pg(p) = clsy (u(p))
[resp. py(A) = cluy (u(4))].

Proor. We only show the first assertion, the second being similar. Let
p € X. Since p(p) C py(p), then clxy (u(p)) C py(p). Assume that there
exists ¢ € py(p) and g & clsy (u(p)). Now there exists E € *r such that
g €E*Eand *E N u(p) = . Saturation implies that there exists G € 7 such
that p € G and *E N *G = & Hence *E N *(cly G) = & by transfer.
However, ¢ € p,(p) implies *E N *(cly G) # & and the result follows.

Since X is regular [resp. almost-regular [10]] iff u(p) = py(p) [resp. p,(p)
= pg(p)] for each p € X [6], then it follows that a space X is regular [resp.
almost-regular] iff u(p) [resp. p, (p)] is Q-closed for each p € X. Also, it is easy
to show that a space X is normal [resp. almost-normal [11]] iff w(4) = pe(A4)
[resp. p,(4) = py(A)] for each closed 4 C X. Hence a space X is normal
[resp. almost-normal] iff u(4) [resp. u (4)] is Q-closed for each closed A C X.

REMARK. Button [1], using a different technique, also gives the Q-open and
QO-closed characterizations for regular and normal spaces.

In [6], we give some nonstandard characterizations for semiregular spaces.
Using the Q-topology, we obtain another characterization. Let 7, be the
topology generated by the set of all regular-open subsets in X and 9 its
associated Q-topology.

THEOREM 2.4. A space (X, ) is semiregular iff W(p) € 9, for eachp € X.

ProoOF. For the necessity, let (X, 7) be semiregular. Then J;, = 9. Thus
applying 2.1.1, we have that u(p) € 9, for each p € X.

For the sufficiency, let u(p) € J;. Since *7, is a base for J; and p € u(p),
then it follows that there exists E € *7, such that p € *E C w(p) C p,(p).
Let G be any open set such that p € G. Then the sentence in £

Ax[x e ] Alp € X] A [x CG],

holds in 9N by transfer. Consequently, since we are dealing with filter bases,
we have that p,(p) C p(p). Thus p(p) = p,(p). This implies that (X,7) is
semiregular [6].

3. The cluster set map. As is well known if ¥ is a filter base on X, then
St [Nuc %] is the cluster set for 9, where for W C *X, St [W] = {pl[p € X]
A [w(p) N W #* F]}. Recall that a set W C *X is nuclear if there exists
F C 9(X) such that W = Nuc%. Hence “St” restricted to ns (*X) is essen-
tially the cluster set map for filter bases on X. Of course, in this case “St” may
be considered a map from ns (*X ) into X iff X is Hausdorff. A space (X, ) is
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called strongly-regular if for closed F C X and p € X — F there exist G, H
€ 7 such that p € G, F C H and cly G N cly H = . Observe that com-
pletely regular implies strongly-regular implies regular.

DErFINITION 3.1. For each W C*X, let Sty [W] = {pllp € X] A [ue(p)
N W # @]} and nsy (*X) = U{p(p)|p € X}. Notice that if F is a filter
base, then Sty [Nuc F] is the set of all -cluster points [3] for F. Also, “St,” is
a map from nsy (*X) into X iff X is Urysohn [6] (i.e. for distinct p, ¢ € X
there exist neighborhoods N, N, such that cly N, N cly N, = Q).

THEOREM 3.1. Let (X, 7') be Hausdorff and St:ns (*X) — X. Then:

(i) X is regular tﬂSt [F] = ,u(F) N ns (*X) for each closed F C X.

(i) X is almost-regular iff st [F] = po(F) N ns (*X) for each regular-
closed F C X.

PrOOF. (i) For the necessity, let closed F C X and ¢ € St™' [F]. Then
St (¢) = p implies that ¢ € w(p) and w(p) N *F # &. Hence p € F. Thus
w(p) C *G for each open G O F. Consequently, ¢ € w(F) N ns (*X) implies
that St™' [F] € u(F) N ns (*X). Now assume that X is regular and ¢
€ w(F) N ns (*X). Then q € u(p) for some p € X. Assume that p & F.
Then there exist disjoint G, H € 7 such that p € G and F C H. Thus
u(p) N *H = &. However, this implies the contradiction that g & u(F).
Consequently, St [u(p)] = p € F and the necessity follows.

For the sufﬁcwnc?/ let closed F C X and p & F. Then St™! (p) = u(p)
C ns (*X) and St™ [F] = w(F) N ns (*X). Observe that u(p) N *F = &.
Hence

@ =st"' [Fn{p)] = st [F] n st (p)
= wF) N ns (*X) N w(p) = w(F) N u(p).

Thus there exist disjoint G, H € 7 such thatp € Gand F C H.
(ii) Observe that if F C X is regular-closed in X, then

St [F] € w(F) N ns (*X) C p(F) N ns (*X).

The result follows in the same manner as in (i) since the operator “inty cl,”
preserves disjointness for open sets.

Clearly, a strongly-regular 7 space is Urysohn. Of course, since a strongly-
regular space is regular, then in a strongly-regular space X, F C X is closed iff
Sty [*F] = F. The following result is obtained in the same manner as is
Theorem 3.1.

THEOREM 3.2. Let X be Urysohn. Then X is strongly-regular iff Stg [F]
= wy(F) N nsy (*X) for each closed F C X.

4. Whyburn and Dickman filter bases. In [12], Whyburn says that a filter base
% on X is directed toward A C X if every filter base § stronger than ¥ has a
cluster point in A. Dickman [3] modifies Whyburn’s definition and says that a
filter base & on X is almost-convergent to A C X if every filter base § stronger
than ¥ has an almost-cluster point in 4 (i.e. Sty [Nuc8] N 4 # &).We call a
filter base ¥ a Whyburn [resp. Dickmanl] filter base if ¥ is directed toward [resp.
almost-convergent to] some 4 C X.
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DEFINITION 4.1. A set W C *X is A-compact [resp. §4-compact] for 4 C X
if W U{up)lp € A} [resp. {ug(p)|p € A}).

THEOREM 4.1. Let G be a filter base on X. Then the following statements are
equivalent.

(i) For each open cover C of A, we have that NucF C U{*G|G € C} [resp.
{*(cly G)IG € ¢}].

(i1) Nuc % is A-compact [resp. A-compact].

(iii) For each open cover C of A there exists a finite subcover ), such that
Nuc% C U{*D|D € D} [resp. {*(cly D)|D € D}].

(iv) For each open cover C of A there exists a finite subcover D and an F € G,
such that F C U{D|D € D} [resp. {cly D|D € D}].

ProOF. We only prove the first conclusions since the second follow in a
similar manner.

(i) — (ii). Assume that ¢ € Nuc¥ and ¢ ¢ U{uy(p)|p € A}. Then for
each p € A there exists some open neighborhood G such that g € *G. Thus
C={G|[G € 1] A g &*G]} is an open cover of A such that Nuc%
¢ U{*G|G € ¢}.

(ii) — (iii). Assume that there exists some open cover C of A4 such that for
no finite 9 C C do we have that Nuc¥ C U{*D|D € D}. Now there exists
internal E* € F such that *E C Nuc% and

*E- U{*D|D € 9} # &
for any finite 9 C C. For if we assume that
*E—- U{*D|D € 9} =
for some nonempty finite D C @, where |D| = n, then the sentence in £,
Ix[[x e F] A [x C Dy U --- U D],

holds in *9%. Thus by transfer there would exist F € & such that *F
C*DyU ---UD,)=*D U ---U*D,. This would imply the contradic-
tion that Nuc$ C*F C *D; U --- U *D,. Consequently, using saturation,
*E — U{*C|C € @)} # & implies that there exists ¢ € *E C Nuc% such
that @ & *C for any C € C and the result follows.

(iii) — (iv). Simply let E be the infinitesimal *element which is contained in
*&. Then the sentence in £,

3x[x € F] A [x € U{D|D € D],

holds in *91; hence in 9N by transfer.
(iv) - (i) is obvious.

CoROLLARY 4.1.1. A filter base  on X is Whyburn [resp. Dickman) iff
Nuc¥ C ns (*X) [resp. NucF C ns,y (*X)].

COROLLARY 4.1.2. A filter base $ on X is directed toward [resp. almost-
converges to) A C X iff Nuc ¥ is A-compact [resp. 8A-compact].

ReMARK. The reader may wish to compare Theorem 4.1 with the known
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results that a set A C X is compact [resp. quasi-H-closed relative to X] iff *4
is A-compact [9] [resp. §4-compact [6]].

Recall that a map f: X — Y is strongly #-continuous at p € X if for every
open neighborhood N of f(p) there exists some open neighborhood G of p such
that f[cly G] C N. Since in the Q-topology u(p) is open and cl«y (u(p))
= pp(p) for each p € X, then the next result follows easily and compares
nicely with the results of Fuller [4] and Wyler [13].

THEOREM 4.2. Let ns (*X) [resp. nsy (*X )] carry the topology induced by the
Q-topology on *X. Then St:ns (*X) — X [resp. Sty: nsy(*X) > X] is a
continuous [resp. strongly 8-continuous] map iff X is Hausdorff [resp. Urysohn].

REFERENCES

1. R. W. Button, Monads for regular and normal spaces (to appear).

2. R. Dickman, a-perfect mappings and almost-convergence (preprint).

3. R. Dickman and J. Porter, §-perfect and §-absolutely closed functions (preprint).

4. R. V. Fuller, A characterization of local compactness, Proc. Amer. Math. Soc. 37 (1973),
615-616. MR 47 #5825.

5. R. A. Herrmann, Nonstandard topological extensions, Bull. Austral. Math. Soc. 13 (1975),
269-290.

6. ————, The 8 and a-monads in general topology (to appear).

7. W.A.J. Luxemburg, A4 general theory of monads, Applications of Model Theory to Algebra,
Analysis and Probability (Internat. Sympos., Pasadena, Calif., 1967), Holt, Rinehart and Winston,
New York, 1969, pp. 18-86. MR 39 #6244.

8. M. Machover and J. Hirschfeld, Lectures on non-standard analysis, Lecture Notes in Math.,
vol. 94, Springer-Verlag, Berlin and New York, 1969. MR 40 #2531.

9. A. Robinson, Non-standard analysis, North-Holland, Amsterdam, 1966.MR 34 # 5680.

10. M. K. Singal and S. P. Arya, On almost-regular spaces, Glasnik Mat. Ser. I1I 4 (24) (1969),
89-99. MR 39 #4804.

11. , Almost normal and almost completely regular spaces, Glasnik Mat. Ser. I1I 5 (25)
(1970), 141-152. MR 43 #1111.

12. G. Whyburn, Directed families of sets and closedness of functions, Proc. Nat. Acad. Sci.
U.S.A. 54 (1965), 688-692. MR 32 #435.

13. O. Wyler, A characterization of regularity in topology, Proc. Amer. Math. Soc. 29 (1971),
588-590. MR 43 #6865.

DEPARTMENT OF MATHEMATICS, U.S. NAVAL ACADEMY, ANNAPOLIS, MARYLAND 21402



