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Abstract. We use nonstandard topology and the g-topology to character-

ize normal, almost-normal, regular, almost-regular, semiregular spaces. The

cluster [resp. 0-cluster] set relation is used to characterize regular, almost-

regular [resp. strongly-regular] spaces. The Whyburn [resp. Dickman] filter

bases are characterized and it is shown that the cluster [resp. f-cluster] set

relation restricted to the domain of the Whyburn [resp. Dickman] filter bases

is an essentially continuous [resp. strongly 0-continuous] map iff the space is

Hausdorff [resp. Urysohn].

1. Introduction. This paper has three major purposes. First, we investigate

the Q-topology on an enlargement *X of a topological space X as introduced

by Robinson [9] and show, among other results, that the Q-closure of a point

or set monad is the 0-monad [6]. Moreover, using the g-topology and the point

or set monad, we characterize regular, semiregular, almost-regular [10], normal

and almost-normal [11] spaces by means of a collection of highly analogous

statements.

Fuller [4] defines a topology on the set of all clustering filters on X and using

the lower semifinite topology shows that the cluster set map is continuous iff

X is locally compact. Employing a different topology on the set of all

converging filters, Wyler [13] shows that the convergence of a filter on a

Hausdorff space X is a continuous map iff X is regular. We use that standard

part [resp. ^-standard part] relation, which can be considered the cluster [resp.

0-cluster] set map, and show that, from the nonstandard viewpoint, regular

[resp. almost-regular, strongly-regular] spaces are characterizable by similar

statements involving the inverse of this relation. Further, by considering the

near-standard [resp. ^-near-standard] points and employing the induced Q-

topology, we show that the cluster [resp. ^-cluster] set relation is a continuous

map iff X is Hausdorff [resp. Urysohn].

In [12], Whyburn introduces the concept of a filter base being directed

toward A C X and uses this concept to characterize perfect (not necessarily

continuous) maps. Dickman [2], [3] modifies Whyburn's definition and intro-

duces the concept of a filter base almost-converging to A C X. Among our

final results, we show that a filter base is directed toward [resp. almost-

converges to] A C X iff its nucleus satisfies a nonstandard condition analo-
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gous to the criterion for compactness [resp. quasi-//-closedness].

Throughout this paper, we let 9lt = (%, G, pr, ap) be the standard set-

theoretic structure constructed by Machover and Hirschfeld [8] and, as usual,

assume that all standard objects are elements of %. Even though some of the

results only require *<31t = (*%,*£,*pr,*ap) to be an enlargement, it is

convenient to assume that the extension *9dl is K-saturated, where k is any

cardinal larger than the cardinality of 9L In the usual manner [7], [8], [9] we

let £ be a first order language with equality and the usual assortment of

abbreviations which formally describes 91L Also we do not distinguish between

the formal constant, relation and operator symbols in £ and the corresponding

objects in <31t. We assume that the reader is familiar with the concepts and

methods associated with nonstandard topology [7], [8], [9]. We use much of the

notation found in [8].

2. The (Mopology. For a topological space (X, t), the Q-topology on *X,

denoted by % is the topology generated by (*^4|y4 G *t} as a base. Recall that

if A G *% then *A = {p\[p G *%] A [p G *A]}. If A G *t, then *A is said

to be *-open. If B G % then B is said to be Q-open, etc. We let p.(p) and p.(A)

be the point and set monad [9] and define

/*«(/>)= n{*(intxc\x G)\p G G Gt},

PaiA) = n{*(int^ c\x G)\A C G G t),

to(p)= n{*(c\x G)\p G G Gt},

N(A)= D{*(c\x G)\A C G Gt)

to be the a and 0 point and set monads respectively.

For many properties of the Q-topology not mentioned in this paper, we refer

the reader to [1], [9]. In particular, Button [1] has shown that the Q-topology

preserves much of the structure of t and, indeed, (*X, 5") is discrete iff (X, t)

is discrete.

Theorem 2.1. If nonempty § C t, then Nuc§ is Q-open.

Proof. If 6 does not have the finite intersection property, then Nuc§ = 0.

Assume that § has the finite intersection property and let *§ be the open filter

generated by Q. Luxemburg's Theorem 2.1.6 [7] holds for any filter on any

meet-semilattice of sets [5]. Hence NucS = U{*E\[E G *<5] A [*E

C Nucg]}.

Corollary 2.1.1. For eachp G XandA c X, the monads \i{p), \i(A), p.a{p),

Ha(A) are Q-open.

Remark. In [1], Button obtains 2.1 by using a considerably more elaborate

technique.
Clearly, if § is an open filter on X, then every infinitesimal *element in § is *-

open. Indeed, we have a converse to this assertion.

Theorem 2.2. Let '5be a filter base on X. If each infinitesimal* element in ?F

is*-open, then Nucf = Nuc §, where % = {G\[G G t] A [G G <$]}.
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Proof. Since ?Fis a filter base, then there exists an infinitesimal *element in

9. Thus, it follows by transfer that § = {G\[G G t] A [G G 9]} # 0. Clear-

ly, Nuc^ C Nucg. Now let F G ^and & = {E\[E G *t] A [E G *$] A [*E
C *F]}. Using saturation and Luxemburg's Theorem 2.7.3(c) [7], which also

holds for filter bases, we have that there exists an open G G 9 such that

G C F. Consequently, Nuc<3 C Nucfand the result follows.

Clearly, for A C X, *(clxA) is*-closed. Hence Hg(p) and p.g(A) are Q-

closed. Of course, ns (*A") = U{p.(p)\p G X) is g-open.

Theorem 2.3. For each p G X [resp. A C X], the monad fig(p) = c\*x (p-(p))

[resp. n9(A) = c\*x (ji(A))].

Proof. We only show the first assertion, the second being similar. Let

p G X. Since p.(p) C p,g(p), then cl*^ (/*(/>)) C p-g(p). Assume that there

exists q G p.g(p) and q £ c\*x (p.(p)). Now there exists E G *t such that

q G*E and *E n p.(p) = 0. Saturation implies that there exists G G t such

that p G G and *E D*G = 0. Hence *£ n *(c\x G) = 0 by transfer.

However, # G p.g(p) implies *E n *(cl^ G) # 0 and the result follows.

Since X is regular [resp. almost-regular [10]] iff p.(p) = n9(p) [resp. /*„(/>)

= u9(/))] for each p E. X [6], then it follows that a space X is regular [resp.

almost-regular] iff pip) [resp. jua(/>)] is Q-closed for each/7 G X Also, it is easy

to show that a space X is normal [resp. almost-normal [11]] iff p.(A) = p.g(A)

[resp. p.a(A) = fig(A)] for each closed A C X. Hence a space X is normal

[resp. almost-normal] iff p.(A) [resp. /ia(^)] is Q-closed for each closed A C X.

Remark. Button [1], using a different technique, also gives the g-open and

g-closed characterizations for regular and normal spaces.

In [6], we give some nonstandard characterizations for semiregular spaces.

Using the (2-topology, we obtain another characterization. Let t^ be the

topology generated by the set of all regular-open subsets in X and 5S its

associated Q-topology.

Theorem 2.4. A space (X, t) is semiregular iff p.(p) G %for each p G X.

Proof. For the necessity, let (X, t) be semiregular. Then *5S = ?T. Thus

applying 2.1.1, we have that p.(p) G % for each p G X.

For the sufficiency, let p.(p) G %. Since *ts is a base for % andp G \i(p),

then it follows that there exists E G *ts such that p £*E C p,(p) C na(p).

Let G be any open set such that p G G. Then the sentence in £,

3x[[x G tJ A [p G A"] A [x C G]],

holds in <91t by transfer. Consequently, since we are dealing with filter bases,

we have that jj.a(p) C n(p). Thus ii(p) = p.a(p). This implies that (A",t) is

semiregular [6].

3. The cluster set map. As is well known if 9 is a filter base on X, then

St [Nucf] is the cluster set for % where for W C *X, St [W] = {p\[p G *]

A [p,(p) C\ W ¥- 0]}. Recall that a set ^ C *X is nuclear if there exists

f C <3'(Ar) such that W = Nucf. Hence "St" restricted to ns (*X) is essen-

tially the cluster set map for filter bases on X. Of course, in this case "St" may

be considered a map from ns (*X) into X iff X is Hausdorff. A space (X, t) is
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called strongly-regular if for closed F C X and p G X - F there exist G, H

G t such that p G G, F C H and cl^ G n clx H = 0. Observe that com-

pletely regular implies strongly-regular implies regular.

Definition 3.1. For each W C*X, let Ste[W] = {p\[p G X] A [/^(p)

n W # 0]} and nstf (*Ar) = U{/ifl(/>)|p G A"). Notice that if <5 is a filter

base, then St9 [Nuc $] is the set of all 0-cluster points [3] for §. Also, "Ste" is

a map from nss (*A) into X iff A is Urysohn [6] (i.e. for distinct p, q G X

there exist neighborhoods Np, Nq such that cl^ A^ n cl^ Nq = 0).

Theorem 3.1. Let (X, t) be Hausdorff and St: ns (*X) -» X. Then:

(i) A is regular iffSC1 [F] = p,(F) n ns (*X)for each closed F C X.

(ii) A" « almost-regular iff St~   [F] = ^(F) n ns {*X) for each regular-

closed F C X.

Proof, (i) For the necessity, let closed F C X and q G St-1 [F]. Then

St (?) = p implies that q G /t(p) and p{p) D *F # 0. Hence p £ F. Thus

/*(/?) C *G for each open G D F. Consequently, <? G ju(F) n ns (*X) implies

that St"1 [F] C p,(F) n ns(*A). Now assume that X is regular and q

G ju(F) n ns (*X). Then <7 G p(p) for some /> G X. Assume that p & F.

Then there exist disjoint G, H G t such that p G G and F C H. Thus

/t(/>) n *// = 0. However, this implies the contradiction that ^ G n(F).

Consequently, St [/*(/>)] = p £ F and the necessity follows.

For the sufficiency, let closed F C X and p $ F. Then St-1 (/>) = ju(/j)

C ns (*X) and St"T [F] = jn(F) n ns (*A). Observe that /i(/>) n *F = 0.
Hence

0 = Sf' [f n {p}] = sr1 [F] n St"1 (/>)

= p(F) n ns (*a) n M/0 = M(F) n Mp).

Thus there exist disjoint G, H G t such that p G G and F C //.

(ii) Observe that if F C A" is regular-closed in A, then

St"1 [F] C ^(F) D ns (*A) C /ta(F) n ns (*A).

The result follows in the same manner as in (i) since the operator "int^- c\x"

preserves disjointness for open sets.

Clearly, a strongly-regular 7f space is Urysohn. Of course, since a strongly-

regular space is regular, then in a strongly-regular space X, F C X is closed iff

St# [ *F] = F. The following result is obtained in the same manner as is

Theorem 3.1.

Theorem 3.2. Let X be Urysohn. Then X is strongly-regular iff St^"1 [F]

= fi9(F) n ns9 (*X)for each closed F C X.

4. Whyburn and Dickman filter bases. In [12], Whyburn says that a filter base

'S on X is directed toward A C A if every filter base § stronger than SF has a

cluster point in A. Dickman [3] modifies Whyburn's definition and says that a

filter base ^ on A" is almost-convergent to A C X if every filter base § stronger

than ?Fhas an almost-cluster point in A (i.e. St9 [Nuc§] n A # 0).We call a

filter base "J a Whyburn [resp. Dickman] filter base if SFis directed toward [resp.

almost-convergent to] some A C X.
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Definition 4.1. A set W C *X is ,4-compact [resp. 0A -compact] for A c X

ifWC  U{p(p)\p G A) [resp. {p.e(p)\p G A}].

Theorem 4.1. Let 9 be a filter base on X. Then the following statements are

equivalent.

(i) For each open cover G of A, we have that Nuc'SC U{*G|G G G) [resp.

{*(c\x G)\G £ e}].
(ii) Nucffw A-compact [resp. 9A-compact\

(iii) For each open cover Q of A there exists a finite subcover 6D, such that

NucffC  U{*£>|Z> G q>}[resp.{*(c\xD)\D G <$}].
(iv) For each open cover Q of A there exists a finite subcover <>D and an F El %

such that F C  \J{D\D G <$} [resp. {c\x D\D G <$}].

Proof. We only prove the first conclusions since the second follow in a

similar manner.

(i) —> (ii). Assume that q G Nucfand q $ U{fig(p)\p G A}. Then for

each p G A there exists some open neighborhood G such that q & *G. Thus

G = {G\[G G t] A [q $. *G]} is an open cover of A such that NuCfJ

C  U{*G|G G G).
(ii) -» (iii). Assume that there exists some open cover G of A such that for

no finite ty C Q do we have that Nuc?F C U{*Z>|Z> G ^D}. Now there exists

internal E* G ■Jsuch that *£ C Nuc^and

*E- U{*D\D G <?)} # 0

for any finite ^Cfi, For if we assume that

*£- u{*/)|z» e <?)} = 0

for some nonempty finite <>D C G, where |<>D| = n, then the sentence in £,

3x[[x G <?] A [x c D, U • • • U D„]],

holds in *9H. Thus by transfer there would exist f£f such that *F

C *(Z>, U • • ■ U Dn) = *Z), U • • ■ U *Dn. This would imply the contradic-

tion that Nuc? C *F C *£>, U • • • U *£>„. Consequently, using saturation,

*E - U{*C|C G G} =t 0 implies that there exists q E*E C Nucf such
that a G *C for any C G Q and the result follows.

(iii) —> (iv). Simply let E be the infinitesimal *element which is contained in

*'$. Then the sentence in £,

3x[[x G fr ] A [x C   U{Z>|£> G 3)}]],

holds in *91L; hence in 911 by transfer,

(iv) -» (i) is obvious.

Corollary 4.1.1. ^ filter base 9 on X is Whyburn [resp. Dickman] iff
Nuc^ C ns (*X) [resp. Nucf C nss (*X)).

Corollary 4.1.2. A filter base f on X is directed toward [resp. almost-

converges to] A C X iff'Nuc'S is A-compact [resp. 0A-compact].

Remark. The reader may wish to compare Theorem 4.1 with the known
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results that a set A C X is compact [resp. quasi-//-closed relative to A"] iff *A

is .4-compact [9] [resp. 6A -compact [6]].

Recall that a map /: A —> Y is strongly ^-continuous at p G A if for every

open neighborhood N of ftp) there exists some open neighborhood G of p such

that /[cl^ G] C N. Since in the G>topology p(p) is open and cl*^ (p.(p))

= [ig(p) for each p G A, then the next result follows easily and compares

nicely with the results of Fuller [4] and Wyler [13].

Theorem 4.2. Let ns (*A) [resp. ns# (*A)] carry the topology induced by the

Q-topology on *X. Then St:ns(*A)-»A [resp. Ste: ns9 (*A) -* X] is a

continuous [resp. strongly 9-continuous] map iff X is Hausdorff [resp. Urysohn}.
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