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A TRANSFER PRINCIPLE FOR
SIMPLE PROPERTIES OF THEORIES

MARK E. NADEL

Abstract. A notion of simple property of theories is introduced and it is

shown that if P is a simple property of theories, A countable admissible, and

M a structure in A, then ThA(M) has property P iff Th^J^M) has property

P.

In our earlier paper [3] we showed that a model is =00^ to an uncountable

model iff there is an uncountable model of its complete theory with respect to

some admissible set containing a copy of the given model. As we remarked

there, though this result seemed very much like the well-known result of

Gregory [1] and Ressayre [5], it was not clear if and how the former could be

derived from the latter. It was only by examining Ressayre's proof that we

were led to a proof of our result.

Subsequently, we observed that a number of results of a related character

could be obtained. This in turn led us to formulate a "transfer principle."

Roughly speaking, given a theorem of a type to be specified later which tells

when a 2-definable theory on a countable set has some property P, the

"transfer principle" yields the theorem:

Let A be countable admissible and let M be a model in A. Then ThA(M) has

property P iff Thxu(M) has property P.

Each of the results alluded to above is seen to be an instance of this

"transfer principle." Nevertheless, we feel that our proof in [3] is still of

interest since a much more direct argument is used in place of the Gregory-

Ressayre theorem which would constitute the starting point for the applica-

tion of the "transfer principle."

For the most part, it makes no difference whether or not the admissible sets

considered are allowed to contain urelements. For this reason we suppress all

mention of urelements until the very end where we make specific use of them.

Consequently, we generally use x+ to denote the smallest admissible set

containing x, and reserve the notation HYP(x) for emphasis in the use of

urelements.

Given a structure M and a fragment LA, we use ThA(M) to denote the set

of all sentences of LA true in M. Similarly, we use Tbxu(M) to denote the

class of all sentences of LIXU true in TV/.

If A is admissible, then by a ~LA theory in LA we mean a class of sentences

of LA definable over A by a 2 formula of set theory with parameters from A.
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Following our practice in [3], we use the notion of 2^-saturated in the weak

sense; namely M is said to be a 2^-saturated model of a theory T provided

that there is some countable admissible B D A with the same ordinals as A

which contains an isomorphic copy of M.

We will need the following results which were also basic for [3].

Lemma 1. Let A be countable admissible and let T be a"LA theory which has

a model. Then T has a 2^ -saturated model.

Lemma 2. Suppose A is countable admissible and M, N G A. Then M =A N

iff M a N.

Lemma 3. Let A be countable admissible and T a complete theory in LA. If T

has a model in A, then T has a unique Unsaturated model up to isomorphism.

We wish to thank S. Feferman and J. Stavi for their patience with an earlier

version of these results.

1. For convenience we fix some L and L'. All admissible sets considered

will contain L and L'. By an assignment T of 2 theories in L' we mean a

mapping which assigns to each countable admissible set A a 2^, theory T'A in

L'A such that if B is also countable admissible and A c B, then T'A C T-.

A property P is said to be a property of theories provided that if any theory T

has property P and V is a theory logically equivalent to T, then T' has

property P.
Definition 1. A property P of theories in Lxu is said to be simple iff there

is an assignment of 2 theories of L', T', such that for any countable

admissible set A:
(i) If T is a theory in LA set primitive recursively definable on A, then T has

property P iff T u T'A has a model; and
(ii) If M is a structure for L and M has an expansion to a structure for

L u L' satisfying TM + , then M has an expansion to a structure for L\j L'

satisfying TM + + .

Once this definition has been formulated, the desired theorem and its proof

are easily found.

Theorem 1. Let P be a simple property of theories. Let A be a countable

admissible set with M G A a structure for L. Then ThA(M) has property P iff

Th^^M) has property P.

Proof. We must first show that with A and M as above, if ThA(M) has

property P, then so does Th00u(M). Let us therefore assume that ThA(M) has

property P and that T'A is a 2-definable theory associated with P as in

Definition 1.

Since M G A, Th^(M) is set primitively recursively definable on A,

whence the 2^ theory ThA(M) u T'A has a model. By Lemma 1 above,

Th^(A/)u T'A has a 2^-saturated model A/*. Then, since M*|"Lt=

Th^(M) and M*\L is 2^-saturated (with respect to L), by Lemma 3

above, M*\L at M.
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In particular then, M has an expansion to a model of T'A, and since

M + C A, a fortiori, to a model of T'M*. Hence, by (ii) of Definition 1, M has

an expansion TV* to a model of T'M*+. We now use the fact that within M + +

lies a Scott sentence a of M, characterizing M up to =xu (cf. [2]).

Now, since TV* f= {a} U T'M + + and {a} is set primitively recursively defin-

able on M + +,by (i) of Definition 1, it follows that {a} has property P.

Finally since {a} and ThMU(M) are equivalent, Tbxu(M) has property P.

The converse is easy. Suppose Th00u(A/) has property P. Then since P is a

property of theories and M has a Scott sentence in A+, ThA+(M) has

property P. Whence ThA+(M) u T'A* has a model. Now, since T'A C T'A+,

ThA(M) u T'A has a model, and so ThA(M) has property P.    □

2. We now give two applications of Theorem 1.

Application 1. We show that if A is countable admissible and M G A,

then Th^ (M) has an uncountable model iff 1bxu(M) has an uncountable model.

By Theorem 1 it is sufficient to show that "-has an uncountable model" is

a simple property of theories. First, it is obvious that "— has an uncountable

model" is a property of theories. To show that it is a simple property we

appeal to the Gregory-Ressayre theorem viz. If T is a "LA theory in LA for A

countable admissible, then T has an uncountable model iff T has a pair of

models A/,, M2 such that A/, < ^A M2.

The obvious candidate for the theory T'A as described in Definition 1 is the

following theory in the alphabet U obtained by adding an additional unary

predicate symbol U to L:

1. 3x -, U(x),

2. <p(xx, . . . , xn) —» <p<-u\xx, . . . , xn), for each formula <p(xx, . . . , xn) E

LA, and n G w,

where <p(t/) is the relativization of <p to the predicate symbol U. TA is easily

seen to give rise to an assignment of £ theories in L'. It only remains to verify

(ii) of Definition 1.

This was essentially already done in [3], but we briefly sketch it again.

Using the hypothesis of (ii) together with Lemmas 1 and 2, it follows that M

can be properly LA elementarily embedded in itself. However, using Lemma 1

it can be shown that the embedding is actually LOBU elementary, which insures

that the conclusion of (ii) holds.

Application 2. We collect together a number of familiar properties, each

of which can easily be seen to be a simple property of theories. In order to

allow fixed parameters in the 2 theories given by an assignment, it sometimes

becomes necessary to restrict our attention to those admissible sets containing

the parameters. More significantly, the notion of simple property can be

extended so as to allow structures for the original alphabet £ to be relativized

reducts of structures for £' rather than just reducts.

The existence of models with various automorphism properties, e.g. non-

rigidity, infinitely many automorphisms, any element can be taken to any

other element by an automorphism, an automorphism of order two, etc., are

all easily seen to be simple properties of theories, as are the existence of

models with elementary submodels or extensions of various strengths. Other

notions will, no doubt, occur to the reader.
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One of these may be the existence of models with indiscernibles or ordered

indiscernibles. The latter suggests that having models of arbitrarily large

cardinality might be a simple property of theories. Here, however, one runs

into difficulty in trying to find a structure generated from indiscernibles by

Skolem functions. The analogue of Application 1 for arbitrarily large models

is, as far as we know, open at this time.

3. The object of this section is to show that if a 2^ theory is sufficiently

strong, then its 2^,-saturated models cannot be distinguished from one

another on the basis of the simple properties of their LM theories.

Definition 2. For any admissible A a theory T is said to be strongly

complete 2^ iff T is 2^ and for each sentence <p of Leoa of quantifier rank

some ordinal of A,T t= <p or T t= —i<p.

The following corollaries to Theorem 1 are then immediate.

Corollary 1. Let A be countable admissible and T a strongly complete 2^

theory, M a 2^-saturated model of T. Suppose P is a simple property of theories,

then T has property P (/JThwu(Af) has property P.

Proof. One needs only note that ThM+ (M) and T are logically equivalent.

Corollary 2. Let A, T, and P be as above, with M and N Unsaturated

models of T. Then Thxa(M) has property P iff Th^^A) has property P.

We observe now that in the proof of Theorem 1 we only used the strength

of the notion "property of theories" in the special case in which the theory is

complete for Lxa. On the other hand, the proof of Corollary 1 seems to

depend directly on the full strength of this notion. From the notion of being

simple it does follow that if T, and T2 are both primitive recursively definable

on A and T2 is logically at least as strong as Tv if T2 has property P, so does

T[. However, this does not seem to be sufficient for the proof of Corollary 1.

In view of these observations, let us relax the notion "property of theories"

and consider "weak properties of theories", for which one requires only that

if T, and T2 are logically equivalent Laou complete theories and T, has

property P, then T2 does also. It is still possible to obtain a version of

Corollary 2, but not quite so easily.

Theorem 2. Let A be countable admissible, T a strongly complete "LA theory,

and M and N 2^ -saturated models of T. Suppose P is a simple weak property of

theories. Then ThWB(M) has property P iff Thxa(N) has property P.

Proof. It is now useful to take M and N as models formed from urele-

ments and assume L to consist of pure sets. It is easy to see that this imposes

no restriction on the isomorphism type of M or N.

The key fact we need is that HYP(M) and HYP(/V) have the same pure

sets. This is shown in [4]. Since T is strongly complete, it then follows that

ThHYP,M)(M) = ThjjYp^iA7), since all sentences in either theory have

quantifier rank an ordinal of A. The result now follows directly from

Theorem 1 which we noted held for weak properties of theories.    □
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