A COMMUTATIVITY THEOREM FOR RINGS

M. CHACRON ${ }^{1}$

Abstract

Let R be any associative ring. Suppose that for every pair $\left(a_{1}, a_{2}\right) \in R \times R$ there exists a pair $\left(p_{1}, p_{2}\right)$ such that the elements a_{i} $-a_{i}^{2} p_{i}\left(a_{i}\right)$ commute, where the p_{i} 's are polynomials over the integers with one (central) indeterminate. It is shown here that the nilpotent elements of R form a commutative ideal N, and that the factor ring R / N is commutative. This result is obtained by the use of the concept of cohypercenter of a ring R, which concept parallels the hypercenter of a ring.

Introduction. Let R be any associative ring with center Z. Let $p(t)$ be a polynomial over the integers in one indeterminate. In the early 1950's, I. N. Herstein proved that if R is subject to the condition $x-x^{2} p_{x}(x) \in Z$, all $x \in R$, then $R=Z$ [3]. More recently, Herstein has shown a theorem solving a longstanding question, which asserts that if R is subject to the condition $x_{1}^{n_{1}} \cdot x_{2}^{n_{2}}=x_{2}^{n_{2}} \cdot x_{1}^{n_{1}}$, all $x_{i} \in R\left(n_{i} \geqslant 1\right.$ depending on the $\left.x_{i}^{\prime} s\right)$, then the ideal commutator of R is nil [5]. This theorem applies to the rings R, which are radical over a commutative subring A, in the sense that $x^{n(x)} \in A$, all $x \in R$.

One could look at analogous situations with respect to the $x-x^{2} p(x)$ theorem cited above. For instance if the ring R is subject to the condition

$$
\begin{equation*}
x-x^{2} p(x) \in A \tag{0}
\end{equation*}
$$

(where A is a commutative subring) does it follow, again, that the ideal commutator is, at least, nil? In this paper we prove the following commutativity theorem. Suppose that for each pair x_{1}, x_{2} there exists a pair of polynomials $p_{1}(t), p_{2}(t)$ such that the elements $x_{i}-x_{i}^{2} p_{i}\left(x_{i}\right)$ commute (C). Then the ideal commutator of R is nil, and the nilpotent elements form a commutative ideal. Thus R satisfies a multilinear identity of degree 4 (Theorem 3). This result applies obviously to the rings subject to condition $\left(\mathrm{C}_{0}\right)$ (since $\left(\mathrm{C}_{0}\right)$ is a stronger condition).

Conventions. All polynomials are polynomials over the integers \mathbf{Z} with the indeterminate t. We denote by \mathcal{E} the set of polynomials $g(t)$ of the form $g=t-t^{2} p(t)$. Clearly \mathcal{E} is a multiplicatively closed subset (under composition). Given the ring R, we denote by Z the center of R, by J the Jacobson

[^0]radical of R, by N the prime radical of R. If X is a subset of $R, C_{R}(X)$ $=\{a \in R, a x=x a$, all $x \in X\}$. The commutator $x_{1} x_{2}-x_{2} x_{1}$ of the pair $\left(x_{1}, x_{2}\right)$ is denoted by $\left[x_{1}, x_{2}\right]$. Finally the rings considered here need not be with 1 .

1. Preliminary results. We collect some of the facts to be used for our main result (Theorem 3). Remarks 1-4 are known and easy. Although Remark 8 is essentially proven in [4], we have given its complete proof for convenience of the reader.

Remark 1 (Jacobi's identity). $[x y, a]=[x, a] y+x[y, a]$. If then $[x, a]=0$ it follows that $[x y, a]=x[y, a]$.

Remark 2. If I is a right ideal of $R, I \cdot\left[C_{R}(I), R\right]=0$.
Remark 3. If R is prime, and if $I \neq 0, C_{R}(I)=Z$.
Remark 4. If R is prime, and if I is commutative, $R=Z$.
Recall that an element x_{0} of R such that $x_{0}+x_{0}^{\prime}+x_{0} x_{0}^{\prime}=0$ for some x_{0}^{\prime} commuting with x_{0} is called quasi-regular. Then $1+x_{0}$ is invertible with inverse $1+x_{0}^{\prime}$ (formally). The quasi-inner automorphism $x \mapsto x+x_{0} x+x x_{0}^{\prime}$ $+x_{0} x x_{0}^{\prime}$ is denoted as usual by $x \mapsto\left(1+x_{0}\right) x\left(1+x_{0}\right)^{-1}$.

Remark 5 [4]. If x_{0} is quasi-regular,

$$
\left[x_{0}, a\right]\left(1+x_{0}\right)^{-1}=a-\left(1+x_{0}\right) a\left(1+x_{0}\right)^{-1}
$$

Remark 6 [4]. If A is an additive subgroup of the ring R, which is preserved re quasi-inner automorphisms, and if I is a quasi-regular right ideal, then $A \cap I$ $=0$ implies $A \subseteq C_{R}(I)$.

Remark 7 [4]. If A is as in Remark 6, and if A contains no nilpotent elements, for any $a \in A$ with $a u=0$, we have $u R a^{2}=0$. Thus if R is prime, A has no divisors of zero on R.

Remark 8 (Brauer, Herstein). Suppose that the sequence $\left(x, z, b_{1}, b_{2}\right)$ in R has the following properties:
(i) z, b_{1}, b_{2} commute pairwise;
(ii) $x,-z \neq 0, z x$ are quasi-regular;
(iii) If $c_{i}=\left[x, b_{i}\right]$ is a zero divisor then $c_{i}=0$;
(iv) $\left[(1+x) b_{2}(1+x)^{-1}, b_{1}\right]=0,\left[(1+z x) b_{2}(1+z x)^{-1}, b_{1}\right]=0$.

Then at least one of the c_{i} 's must be 0 .
Proof. Let $a_{1}=(1+x) b_{2}(1+x)^{-1}$ and $a_{2}=(1+z x) b_{2}(1+z x)^{-1}$. We have by (iv),
(v) $\left[a_{1}, b_{1}\right]=\left[a_{2}, b_{1}\right]=0$,
and we have

$$
\begin{equation*}
(1+x) b_{2}=a_{1}(1+x), \quad(1+z x) b_{2}=a_{2}(1+x) \tag{1}
\end{equation*}
$$

An elementary operation gives

$$
\begin{equation*}
(z-1) b_{2}=z a_{1}-a_{2}+\left(z a_{1}-a_{2} z\right) x \tag{2}
\end{equation*}
$$

Now by (i) both b_{2} and z commute with b_{1}, so, $\left[(z-1) b_{2}, b_{1}\right]=0$. Also z,
a_{1}, a_{2} commute all with $b_{1}((\mathrm{v}))$, thus $\left[z a_{1}-a_{2}, b_{1}\right]=0$. Since by Jacobi's identity $\left[\left(z a_{1}-a_{2} z\right) x, b_{1}\right]=\left(z a_{1}-a_{2} z\right)\left[x, b_{1}\right]$, we see that $\left(\mathrm{E}_{2}\right)$ implies

$$
\begin{equation*}
\left(z a_{1}-a_{2} z\right) \cdot\left[x, b_{1}\right]=\left(z a_{1}-a_{2} z\right) c_{1}=0 \tag{3}
\end{equation*}
$$

If then $c_{1} \neq 0$ is a nonzero divisor, $\left(\mathrm{E}_{3}\right)$ gives $z a_{1}-a_{2} z=0$. Going back to $\left(E_{2}\right)$ we get
$\left(\mathrm{E}_{4}\right) \quad b_{2}(z-1)=(z-1) b_{2}=z a_{1}-a_{2}=a_{2} z-a_{2}=a_{2}(z-1)$,
that is, $\left(b_{2}-a_{2}\right)(z-1)=0$, so, $(z-1)^{-1}\left(b_{2}-a_{2}\right)(z-1)=0$, consequently $b_{2}=a_{2}$. From the second equation in $\left(\mathrm{E}_{1}\right)$ follows $\left[b_{2}, z x\right]=0$. Since $\left[b_{2}, z\right]=0$ we get $z\left[b_{2}, x\right]=0$, so, $z \cdot c_{2}=0$. Since c_{2} is a nonzero divisor or 0 and since $z \neq 0, c_{2}=0$ necessarily, thereby proving Remark 8.

Remark 9. Let R be a prime ring having a radical $(J \neq 0)$. Any commutative subgroup A of R containing no nilpotent elements, which is preserved re quasiinner automorphisms, must be contained in the center.

Proof. If $A \cap J=0$, then by Remark $6, A \subseteq C_{R}(J)$, and by Remark 3, $C_{R}(J)=Z$, so $A \subseteq Z$. If, on the other hand, $A \cap J \neq 0$, choose $z \neq 0$ in $A \cap J$, and any $a \in A, x \in J$. If $b_{1}=b_{2}=a$, the sequence (x, z, b_{1}, b_{2}) has all the requirements as in Remark 8. Let us show, for example (iii). Let $c=[x, a]$. If $c \neq 0$, then $c(1+x)^{-1} \neq 0$ is in A (Remark 5). By Remark 7, A has no divisors on R, thus $c(1+x)^{-1}$ is a nonzero divisor. It follows that c is a nonzero divisor (or zero). Applying Remark 8 we see that $c=0$ necessarily, that is, $[x, a]=0$. Thus $A \subseteq C_{R}(J)=Z$ as wished.

Remark 10. Let \mathcal{E}_{0} be a closed set of polynomials. Suppose that for every $\left(a_{1}, a_{2}\right)$ there is $\left(g_{1}, g_{2}\right) \in \mathcal{E}_{0} \times \mathcal{E}_{0}$ such that $\left[g_{1}\left(a_{1}\right), g_{2}\left(a_{2}\right)\right]=0$. Let $a, x \in R$ with the following conditions.
(i) $-a, x$, ax are quasi-regular;
(ii) $\left[x, \mathscr{E}_{0}(a)\right]$ has no proper divisors of zero on R.

Then for some $g \in \mathcal{E}_{0},[x, g(a)]=0$.
Proof. Applying $\left(\mathrm{C}_{0}\right)$ for $\left((1+x) a(1+x)^{-1}, a\right)$ we get for some g_{1}, h_{1} $\in \mathcal{E}_{0}$,

$$
\left[(1+x) g_{1}(a)(1+x)^{-1}, h_{1}(a)\right]=0
$$

Applying $\left(\mathrm{C}_{0}\right)$ for $\left[(1+a x) g_{1}(a)(1+a x)^{-1}, h_{1}(a)\right]$ we get for some g_{2}, h_{2} $\in \mathcal{E}_{0}$,

$$
\left[(1+a x) g_{2}\left(g_{1}(a)\right)(1+a x)^{-1}, h_{2}\left(h_{1}(a)\right)\right]=0
$$

Setting $b_{1}=h_{2}\left(h_{1}(a)\right), b_{2}=g_{2}\left(g_{1}(a)\right), z=a$, we see that $\left(x, z, b_{1}, b_{2}\right)$ satisfies the hypothesis in Remark 8 , so $\left[x, b_{1}\right]=0$ or $\left[x, b_{2}\right]=0$, with $b_{i}=g(a)$, some $g \in \mathcal{E}_{0}$.
2. Cohypercenter. The analog with respect to condition (C) (see Introduction) of Herstein's hypercenter [4] is the following set $T=T(R)$.

Definition. $a \in T$ if and only if given $x \in R$ there exists $p(t)$ such that $\left[a, x-x^{2} p(x)\right]=0$, where $p(t)$ is a polynomial having integral coefficients depending on (a, x).

Let us call T the cohypercenter of R. We wish to get the property $T=Z$ for, at least, the class of semiprime rings.

Remark 11. Given $a, b \in T$ and $x \in R$, there is $p(t)$ such that $\left[a, x-x^{2} p(x)\right]$ $=\left[b, x-x^{2} p(x)\right]=0$.

Proof. Since $a \in T$ there is $g_{1} \in \mathcal{E}\left(=\left\{t-t^{2} \mathbf{Z}[t]\right\}\right)$ such that $\left[a, g_{1}(x)\right]$ $=0$. Since $b \in T$ there is $g_{2} \in \mathcal{E}$ such that $\left[b, g_{2}\left(g_{1}(x)\right)\right]=0$. If $g=g_{2} \circ g_{1}$, then $g \in \mathcal{E}$, and $[a, g(x)]=[b, g(x)]=0$.

REMARK 12. T is a commutative subring evidently preserved re quasi-inner automorphisms.

Proof. Given $a, b \in T$ and x there is $g \in \mathcal{E}$ such that $[a, g(x)]=[b, g(x)]$ $=0$ (Remark 11). Thus $[a \pm b, g(x)]=[a b, g(x)]=0$, and $x \in C_{R}\left(T_{0}\right)$, where T_{0} is the subring of R generated by a, and b shows that T is a subring and that $x-x^{2} p_{x}(x)=g_{x}(x) \in Z\left(T_{0}\right)$, all $x \in T_{0} \subseteq R$. By Herstein [3], T_{0} is commutative. Therefore $[a, b]=0$, all $a, b \in T$, that is, T is commutative.

Remark 13 [2,Lemma 2]. Let V be a space over the division ring D. If fis a linear transformation sending each $\vec{v} \in V$ to $\vec{v} \lambda, \lambda \in D$, depending on \vec{v}, and if $\operatorname{dim} V>1$, then f is induced by a scalar (central element λ_{0} of D).

ThEOREM 1. If R is any semiprime ring, the cohypercenter of R is precisely the center of R.

Proof. We prove the assertion by a step-by-step reduction from division rings to the considered rings.

First if R is a division ring, it is clear that $T=Z$ (Remark 9, and Brauer, Cartan, Hua result).

Next if R is a primitive ring, which is not a division ring, then by the density theorem, R acts densely on a space V over the division ring D with a dimension >1. Let $\vec{v} \in V$ and let $a \in T$. If \vec{v} and $\vec{v} a$ were not collinear, by the density action of R, there is $x \in R$ with $\vec{v} x=0$ and \vec{v} ax $=\vec{v}$. Since $a \in T$, there is $y=g(x)=x-x^{2} p(x)$ with $[a, y]=0$, whence, $\vec{v} a y=\vec{v} y a$. Now

$$
\vec{v} a y=\vec{v} a x-\vec{v} a x(x p(x))=\vec{v}-\vec{v}(x p(x))=\vec{v} ;
$$

but, $\vec{v} y a=\vec{v} x(1-x(p(x))) a=\overrightarrow{0}$, a contradiction. This shows that $\vec{v} a$ $=\vec{v} \lambda$, some $\lambda \in D$. By Remark 13, a is induced by a scalar in D. Therefore $a \in Z(R)$.

Next if R is semisimple $(J=0)$, then R is a subdirect product of primitive rings \bar{R}. By the above $\bar{T}=T(\bar{R})=\bar{Z}=Z(\bar{R})$. Since T maps into \bar{T}, T is central in \bar{R}. Therefore $T=Z$.

Next suppose that R is prime but not semisimple. If $a^{2}=0$ with $a \in T$, we claim that $a=0$. In fact if $a \neq 0, I=a R \neq 0$. Since $a \in T$, for every $x \in R$, there is $g \in \mathcal{E}$ such that $[a, g(a x)]=0$. Thus for some $p(t)$, axa $=(a x)^{2} p(a x) a$. Multiplication on the right by x gives $(a x)^{2}=(a x)^{3} p(a x)$.

Therefore $y^{2}=y^{3} p_{y}(y)$, all $y \in I$. Now if I were nil, $y^{2}=0$, all $y \in I$, so, R would contain a nilpotent ideal (Levitski's result), a contradiction. This shows that the π-regular ring I must contain some idempotent $e \neq 0$. If $R_{0}=e R e$, this is a nonzero prime ring verifying again $y^{2}=y^{3} p_{y}(y)$ (since $R_{0} \subseteq e R$ $\subseteq I$). Since by [2], R_{0} satisfies a polynomial identity and since R_{0} is π-regular, R_{0} is the ring of matrices over a division ring. Thus R_{0}, whence R, have nonzero socles, contrary to the choice of R. This shows that $a=0$ necessarily, and T contains no nilpotents, By Remarks 12 and $9, T=Z$ follows.

All in all, we have shown that if R is prime, $T=Z$. We go back to the semiprime ring R. Since R is a subdirect product of prime rings satisfying the desired conclusion, it follows that $T=Z$, thereby proving the theorem.

3. The main result.

Remark 14. If R satisfies (C), any nilpotent element a must belong to T.
Proof. Given $a, b \in R$, we claim that for any given integer n_{0} there is $n \geqslant n_{0}$ such that $\left[a-a^{n} p_{1}(a), b-b^{2} p_{2}(b)\right]=0$. In fact, by the basic property, $\left[a-a^{2} p_{1}(a), b-b^{2} p_{2}(b)\right]=0$. If $a_{1}=a^{2} p_{1}(a), b_{1}=b-b^{2} p_{2}(b)$, there are p_{11}, p_{22} such that

$$
\left[a_{1}-a_{1}^{2} p_{11}(a), b_{1}-b_{1}^{2} p_{22}\left(b_{1}\right)\right]=0
$$

Now the first commutator relation gives $\left[a-a_{1}, b_{1}-b_{1}^{2} p_{22}\left(b_{1}\right)\right]=0$. Adding to the preceding, we get for some $p_{21}(t),\left[a-a^{4} \cdot p_{21}(a), b-b^{2} p_{22}(b)\right]=0$. Continuing in this way, we see that for any $n_{0}, n=2^{n_{0}}$ will do. If then a is nilpotent of index n_{0}, for any $b \in R$,

$$
\left[a-a^{2^{n_{0}}} p_{n_{0}}^{\prime}(a), b-b^{2} p_{2}^{\prime}(b)\right]=\left[a, b-b^{2} p_{2}^{\prime}(b)\right]=0
$$

tell us that $a \in T$.
Theorem 2. If R is a semiprime ring satisfying (C), then R is commutative.
Proof. First suppose that R is a division ring. Let $a, x \in R$. If condition (i) in Remark 10 does not hold, then evidently $[a, x]=0$. If, on the other hand, (i) holds, by Remark $10,[x, g(a)]=0$, some $g \in \mathcal{E}$. This shows that for any $x \in R, x \in T$. By Theorem $1, R=Z$.

Next suppose that R is primitive. Every homomorphic image \bar{R} of a subring of R inherits condition (C), which in view of Remarks 14 and 12, tells us that in \bar{R} the nilpotent elements commute. Since this is patently false for the matrix rings over division rings of rank >1, by a routine argument, R must be a division ring, so, by the above, R must be a field.

Having proved the assertion for the primitive rings we derive, as before, that it holds for the semisimple rings.

Next suppose that R is prime but not semisimple. Since R is evidently semiprime, $T=Z$ (Theorem 1). By Remark $14, R$ has no nilpotent elements. It follows that R has no divisors of zero. Thus the ring J is a ring subject to condition (C), and has no divisors of zero. Let $x, a \in J$. The pair (a, x) satisfies
the hypothesis of Remark 10. Consequently for some $g \in \mathcal{E},[x, g(a)]=0$. This shows that $x \in T(J)$, all $x \in J$. By Theorem $1, J=Z(J)$ follows, and by Remark $4, R=Z$.

Having proved the assertion for the prime rings we derive the desired result.
Let R be any ring subject to condition (C). Since the factor ring R / N inherits (C) and is semiprime, Theorem 2 applies and yields R / N commutative, whence, R / N has no nilpotent elements. This means that N is the set of nilpotent elements of R. By Remark $14, N \subseteq T$ is also commutative. If then I is the ideal commutator of $R, I \subseteq N$ is commutative, so R satisfies the identity $\left[\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right]=0$. Summarizing we get the main result.

Theorem 3. Suppose that for each pair x_{1}, x_{2} in the ring R there exists a pair $\left(p_{1}(t), p_{2}(t)\right)$ of polynomials with integral coefficients such that the elements $x_{i}-x_{i}^{2} p_{i}\left(x_{i}\right)$ commute. Then the ideal commutator of R is nil, and the nilpotent elements form a commutative ideal.

One final remark is in order.
Remark 15 (A noncommutative ring as in Theorem 3). We observed earlier that the rings R subject to the condition $\left(\mathrm{C}_{0}\right)$ (see Introduction) satisfy (C), so, the conclusion in Theorem 3 holds for such a class. One could wonder if the latter rings are commutative. If R is the ring of matrices $R=\binom{F}{0}$ over the field F, and if F is algebraic over a finite field, it was verified in [1] that for every $x \in R$, either $x^{2}=0$ or $x=x^{n(x)+1}, n(x) \geqslant 1$. Thus R satisfies condition $\left(\mathrm{C}_{0}\right)$ re the commutative subring, even commutative ideal, $A=J=\left(\begin{array}{c}0 \\ 0 \\ 0\end{array}\right)$. Here $N=J$ is the set of nilpotent elements, and $R / N \approx F \times F$ is in fact commutative. Is this example the most general one for the noncommutative subdirectly irreducible rings R subject to (C)? If true this would give that the ideal commutator of any ring R with (C) is a square-zero ideal.

References

1. M. Chacron and G. Thierrin, An algebraic dependence over the quasi-centre, Ann. Math. Pura Appl. (to appear).
2. M. Chacron, On a theorem of Herstein, Canad. J. Math. 21 (1969), 1348-1353. MR 41 \# 6905 .
3. I. N. Herstein, The structure of a certain class of rings, Amer. J. Math. 75 (1953), 864-871. MR 15, 392.
4. \quad, On the hypercenter of a ring, J. Algebra (to appear).
5.

Department of Mathematics, Carleton University, Ottawa, Ontario, Canada

[^0]: Received by the editors December 2, 1975.
 AMS (MOS) subject classifications (1970). Primary 16A70.
 Key words and phrases. Commutator, polynomials, quasi-regular elements, subgroups preserved re quasi-inner automorphisms.
 ${ }^{1}$ This Research was supported by NRC of Canada grant A7876.

