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A COMMUTATIVITY THEOREM FOR RINGS

M. chacron1

Abstract. Let R be any associative ring. Suppose that for every pair

(ax,a2) E RxR there exists a pair (px,pf) such that the elements at

- afpjiaj) commute, where the p/s are polynomials over the integers with

one (central) indeterminate. It is shown here that the nilpotent elements of R

form a commutative ideal N, and that the factor ring R/N is commutative.

This result is obtained by the use of the concept of cohypercenter of a ring R,

which concept parallels the hypercenter of a ring.

Introduction. Let R be any associative ring with center Z. Let p(t) be a

polynomial over the integers in one indeterminate. In the early 1950's, I. N.

Herstein proved that if R is subject to the condition x - x px(x) E Z, all

x E R, then R = Z [3]. More recently, Herstein has shown a theorem solving

a longstanding question, which asserts that if R is subject to the condition

x"1 • x22 = x22 ■ x"], all Xj E R (nt > 1 depending on the xjs), then the ideal

commutator of R is nil [5]. This theorem applies to the rings R, which are

radical over a commutative subring A, in the sense that x"^x' E A, all x E R.

One could look at analogous situations with respect to the x — x2p(x)

theorem cited above. For instance if the ring R is subject to the condition

(C0) x - x2p(x) E A

(where A is a commutative subring) does it follow, again, that the ideal

commutator is, at least, nil? In this paper we prove the following commutativ-

ity theorem. Suppose that for each pair xx, x2 there exists a pair of polynomials

px{t), p2it) such that the elements xt — xfp^xf) commute (C). Then the ideal

commutator of R is nil, and the nilpotent elements form a commutative ideal. Thus

R satisfies a multilinear identity of degree 4 (Theorem 3). This result applies

obviously to the rings subject to condition (C0) (since (C0) is a stronger

condition).

Conventions. All polynomials are polynomials over the integers Z with the

indeterminate t. We denote by S the set of polynomials g(t) of the form

g = t - t p(t). Clearly S is a multiplicatively closed subset (under composi-

tion). Given the ring R, we denote by Z the center of R, by J the Jacobson
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radical of R, by N the prime radical of R. If A' is a subset of R, CR(X)

= {a G R,ax = xa, all x G X). The commutator x^2 — x2Xj of the pair

(X[,x2) is denoted by [x|,x2]. Finally the rings considered here need not be

with 1.

1. Preliminary results. We collect some of the facts to be used for our main

result (Theorem 3). Remarks 1-4 are known and easy. Although Remark 8 is

essentially proven in [4], we have given its complete proof for convenience of

the reader.

Remark 1 (Jacobi's identity). [xy,a] = [x,a]y + x[y,a]. If then [x,a] = 0

it follows that [xy, a] = x[y, a].

Remark 2. If I is a right ideal of R, I ■ [CR(I),R] = 0.

Remark 3. If R is prime, and if I ¥= 0, CR(I) = Z.

Remark 4. If R is prime, and if I is commutative, R = Z.

Recall that an element x0 of R such that x0 4- Xg + x0Xq = 0 for some x0

commuting with x0 is called quasi-regular. Then 1 + x0 is invertible with

inverse 1 + Xq (formally). The quasi-inner automorphism x i-> x + x0 x + xxq

+ XqXXq is denoted as usual byxi-»(l + x0)x(l + x0)    .

Remark 5 [4]. If x0 is quasi-regular,

[x0,a](l + xor" = a - (1 + x0)a(l + x0)_1.

Remark 6 [4]. If A is an additive subgroup of the ring R, which is preserved re

quasi-inner automorphisms, and if I is a quasi-regular right ideal, then A C\ I

= 0 implies A  C CR(I).

Remark 7 [4]. If A is as in Remark 6, and if A contains no nilpotent elements,

for any a G A with au = 0, we have uRa = 0. Thus if R is prime, A has no

divisors of zero on R.

Remark 8 (Brauer, Herstein). Suppose that the sequence (x,z,bx,b2) in R

has the following properties:

(i) z, bx, b2 commute pairwise;

(ii) x, —z ¥= 0, zx are quasi-regular;

(iii) If c, = [x, bj] is a zero divisor then c, = 0;

(iv) [(1 + x)b2(l + x)~\bx] = 0, [(1 + zx)Z>2(l + zx)~\bx] = 0.

Then at least one of the c/s must be 0.

Proof. Let ax = (1 + x)b2(\ + x)-1 and a2 = (1 + zx)b2(\ + zx)~x. We

have by (iv),

(v)[ax,bx] = [a2,b[] = 0,

and we have

(E,) (1 + x)b2 = a,(l + x),        (1 + zx)b2 = a2(l + x).

An elementary operation gives

(E2) (z — l)b2 = zax — a2 + (zax — a2z)x.

Now by (i) both b2 and z commute with bx, so, [(z - \)b2,bx] = 0. Also z,
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ax, a2 commute all with bx ((v)), thus [zax - a2,bx] = 0. Since by Jacobi's

identity [(zax - a2z)x„bx] = (zax - a2z)[x,bx], we see that (E2) implies

(E3) (zax - a2z)- [x,bx] = (zax - a2z)cx = 0.

If then Ci ¥= 0 is a nonzero divisor, (E3) gives zax — a2z = 0. Going back to

(E2) we get

(E4)       b2(z - 1) = (z - l)b2 = zax- a2= a2z - a2 = a2(z - 1),

that is, (b2 - a2)(z - 1) = 0, so, (z - I) (b2 - a2)(z - 1) = 0, consequent-

ly b2 = a2. From the second equation in (E,) follows [fc2,zx] = 0. Since

[b2,z] = 0 we get z[t32,x] = 0, so, z ■ c2 = 0. Since c2 is a nonzero divisor or

0 and since z # 0, c2 = 0 necessarily, thereby proving Remark 8.

Remark 9. Let R be a prime ring having a radical (J =£ 0). Any commutative

subgroup A of R containing no nilpotent elements, which is preserved re quasi-

inner automorphisms, must be contained in the center.

Proof. If A n / = 0, then by Remark 6, A C CR (J), and by Remark 3,

CR(J) = Z, so A C Z. If, on the other hand, A ny#0, choose z ^ 0 in

A n J, and any a G A, x E J. If bx = b2 = a, the sequence (x,z,bx,b2) has

all the requirements as in Remark 8. Let us show, for example (iii). Let

c = [x,a]. If c # 0, then c(l + x) ¥= 0 is in A (Remark 5). By Remark 7,

A has no divisors on R, thus c(l + x) is a nonzero divisor. It follows that c

is a nonzero divisor (or zero). Applying Remark 8 we see that c = 0

necessarily, that is, [x,a] = 0. Thus A Q CR(J) = Z as wished.

Remark 10. Let S0 be a closed set of polynomials. Suppose that for every

(ax,a2) there is (gx,g2) G S0 X S0 such that [gx(ax),g2(a2)] = 0. Let a, x E R

with the following conditions.

(i) —a, x, ax are quasi-regular;

(ii) [x, S0(a)] has no proper divisors of zero on R.

Then for some g G S0, [.x,g(<2)] = 0.

Proof. Applying (C0) for ((1 + x)a(l + x)~l,a) we get for some gx, hx

[(1 +x)gx(a)(l +x)-\hx(a)] = 0.

Applying (C0) for [(1 + ax)gx(a)(l + ax)~1,hx(a)] we get for some g2, h2

[(1 + ax)g2(gx(a))(l + ax)-\h2(hx(a))] = 0.

Setting bx = h2(hx(a)), b2 = g2(gx(a)), z = a, we see that (x,z,bx,b2) satisfies

the hypothesis in Remark 8, so [x, bx ] = 0 or [x, b2] = 0, with 6, = g(a), some

8 e so-

2. Cohypercenter. The analog with respect to condition (C) (see Introduc-

tion) of Herstein's hypercenter [4] is the following set T = T(R).
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Definition, a G T if and only if given x G R there exists p(t) such that

[a,x — x2p(x)] = 0, where p(t) is a polynomial having integral coefficients

depending on (a, x).

Let us call T the cohypercenter of R. We wish to get the property T = Z for,

at least, the class of semiprime rings.

Remark 11. Given a, b G T and x G R, there is p(t) such that [a, x - x p(x)]

= [b, x - x2p(x)\ = 0.

Proof. Since a G T there is g, G $ (= {/ - t2Z[t]}) such that [a,g,(x)]

= 0. Since b G T there is g2 G S such that [b,g2(gx(x))] = 0. If g = g2 o g],

then g G S, and [a,g(x)] = [b,g(x)] = 0.
Remark 12. T is a commutative subring evidently preserved re quasi-inner

automorphisms.

Proof. Given a, b G T and x there is g G S such that [a,g(x)] = [6,g(x)]

= 0 (Remark 11). Thus [a ± b,g(x)] = [ab,g(x)] = 0, and x G CR(T0),

where T0 is the subring of R generated by a, and b shows that T is a subring

and that x - x2px(x) = gx(x) G Z(T0), all x G T0 C R. By Herstein [3], T0

is commutative. Therefore [a, b] = 0, all a, b G T, that is, T is commutative.

Remark 13 [2,Lemma 2]. Let V be a space over the division ring D. If f is a

linear transformation sending each v G V to v\,\ G D, depending on v , and

if dim V > 1, then f is induced by a scalar (central element A0 of D).

Theorem \. If R is any semiprime ring, the cohypercenter of R is precisely the

center of R.

Proof. We prove the assertion by a step-by-step reduction from division

rings to the considered rings.

First if R is a division ring, it is clear that T = Z (Remark 9, and Brauer,

Cartan, Hua result).

Next if R is a primitive ring, which is not a division ring, then by the density

theorem, R acts densely on a space   V over the division ring D with a

dimension > 1. Let v G V and let a G T. If v and va were not collinear,—> —> —>
by the density action of R, there is x G R with v x = 0 and v ax = v . Since

a G T, there is >> = g(x) = x - x2p(x) with [a,y] = 0, whence, v ay = vya.

Now

—>—►—> _,    —> —►
v ay = v ax — v ax(xp(x))= v — v (xp(x)) = v ;

but, vya = fx(l — x(p(x)))a = 0, a contradiction. This shows that va

= v A, some A G D. By Remark 13, a is induced by a scalar in D. Therefore

a G Z(R).

Next if R is semisimple (J = 0), then /? is a subdirect product of primitive

rings R. By the above T = T(R) = Z = Z(R). Since 7 maps into T, T is

central in R. Therefore T = Z.

Next suppose that R is prime but not semisimple. If a =0 with a G T, we

claim that a = 0. In fact if a =£ 0, I = aR ¥= 0. Since a G T, for every

x G /?, there is g G S such that [a,g(ax)\ = 0. Thus for some p(t), axa

= (ax) p(ax)a. Multiplication on the right by x gives (ax)   = (ax) p(ax).
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Thereforey = y py{y), ally G /. Now if / were nil,y = 0, ally E I, so, R

would contain a nilpotent ideal (Levitski's result), a contradiction. This shows

that the 77-regular ring / must contain some idempotent e ¥= 0. If R0 = eRe,

this is a nonzero prime ring verifying again y = y p (y) (since fi0 C eR

C /). Since by [2], R0 satisfies a polynomial identity and since fi0 is 7r-regular,

RQ is the ring of matrices over a division ring. Thus R0, whence R, have

nonzero socles, contrary to the choice of R. This shows that a = 0 necessarily,

and T contains no nilpotents, By Remarks 12 and 9, T = Z follows.

All in all, we have shown that if R is prime, T = Z. We go back to the

semiprime ring R. Since fi is a subdirect product of prime rings satisfying the

desired conclusion, it follows that T = Z, thereby proving the theorem.

3. The main result.

Remark 14. If R satisfies (C), any nilpotent element a must belong to T.

Proof. Given a, b E R, we claim that for any given integer n0 there is

n > n0 such that [a — a"px (a), b — b p2 (b)] = 0. In fact, by the basic proper-

ty, [a - a2px(a),b - b2p2(b)] = 0. If ax = a2px(a), bx = b - b2p2(b), there

are px,, p22 such that

[ax - a2pn(a),bx - b2p22(bx)] = 0.

Now the first commutator relation gives [a — ax,bx - bx p22(bx)] = 0. Adding

to the preceding, we get for some p2x(t), [a - a4 • p2X(a),b - b2p22(b)] = 0.

Continuing in this way, we see that for any n0, n = 2"° will do. If then a is

nilpotent of index n0, for any b E R,

[a - a2"°p'no(a),b - b2p2(b)] - [a,b - b2P'2(b)] = 0

tell us that a E T.

Theorem 2. // R is a semiprime ring satisfying (C), then R is commutative.

Proof. First suppose that R is a division ring. Let a, x E R. If condition (i)

in Remark 10 does not hold, then evidently [a,x] = 0. If, on the other hand,

(i) holds, by Remark 10, [x,g(a)] = 0, some g E S. This shows that for any

x E R, x E T. By Theorem 1, fi = Z.

Next suppose that R is primitive. Every homomorphic image R of a subring

of R inherits condition (C), which in view of Remarks 14 and 12, tells us that

in R the nilpotent elements commute. Since this is patently false for the matrix

rings over division rings of rank > 1, by a routine argument, R must be a

division ring, so, by the above, R must be a field.

Having proved the assertion for the primitive rings we derive, as before, that

it holds for the semisimple rings.

Next suppose that R is prime but not semisimple. Since R is evidently

semiprime, T = Z (Theorem 1). By Remark 14, R has no nilpotent elements.

It follows that R has no divisors of zero. Thus the ring J is a ring subject to

condition (C), and has no divisors of zero. Let x, a E J. The pair (a,x) satisfies
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the hypothesis of Remark 10. Consequently for some g G &, [x,g(a)] = 0.

This shows that x G T(J), all x G J. By Theorem I, J = Z(J) follows, and

by Remark 4, R = Z.

Having proved the assertion for the prime rings we derive the desired result.

Let R be any ring subject to condition (C). Since the factor ring R/N inherits

(C) and is semiprime, Theorem 2 applies and yields R/N commutative,

whence, R/N has no nilpotent elements. This means that N is the set of

nilpotent elements of R. By Remark 14, N C T is also commutative. If then /

is the ideal commutator of R, I C A is commutative, so R satisfies the identity

[[xj,x2],[x3,x4]] = 0. Summarizing we get the main result.

Theorem 3. Suppose that for each pair xx, x2 in the ring R there exists a pair

(P\(/\Pi(j)) of polynomials with integral coefficients such that the elements

Xj — Xj Pj(xj) commute. Then the ideal commutator of R is nil, and the nilpotent

elements form a commutative ideal.

One final remark is in order.

Remark 15 (A noncommutative ring as in Theorem 3). We observed earlier

that the rings R subject to the condition (C0) (see Introduction) satisfy (C), so,

the conclusion in Theorem 3 holds for such a class. One could wonder if the

latter rings are commutative. If R is the ring of matrices R = (££) over the

field F, and if F is algebraic over a finite field, it was verified in [1] that for

every x G R, either x2 = 0 or x = x"^'+1, n(x) > 1. Thus R satisfies condi-

tion (C0) re the commutative subring, even commutative ideal, A = J = (q q).

Here N = J is the set of nilpotent elements, and R/N «* F X F is in fact

commutative. Is this example the most general one for the noncommutative

subdirectly irreducible rings R subject to (C)? If true this would give that the

ideal commutator of any ring R with (C) is a square-zero ideal.
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