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A COMMUTATIVITY THEOREM FOR RINGS

M. CHACRON!

ABSTRACT. Let R be any associative ring. Suppose that for every pair
(a,a;) € RX R there exists a pair (p;,p,) such that the elements g;
— a/p;(a;) commute, where the p/s are polynomials over the integers with
one (central) indeterminate. It is shown here that the nilpotent elements of R
form a commutative ideal N, and that the factor ring R/N is commutative.
This result is obtained by the use of the concept of cohypercenter of a ring R,
which concept parallels the hypercenter of a ring.

Introduction. Let R be any associative ring with center Z. Let p(f) be a
polynomial over the integers in one indeterminate. In the early 1950’s, I. N.
Herstein proved that if R is subject to the condition x — xsz(x) € Z, all
x € R, then R = Z [3]. More recently, Herstein has shown a theorem solving
a longstanding question, which asserts that if R is subject to the condition
xt - xy? = x32 - x{', all x; € R (n; > 1 depending on the x;’s), then the ideal
commutator of R is nil [5]. This theorem applies to the rings R, which are
radical over a commutative subring A4, in the sense that x"® e A, all x € R.

One could look at analogous situations with respect to the x — xZp(x)
theorem cited above. For instance if the ring R is subject to the condition

(Co) x—x%p(x) € 4

(where 4 is a commutative subring) does it follow, again, that the ideal
commutator is, at least, nil? In this paper we prove the following commutativ-
ity theorem. Suppose that for each pair x|, x, there exists a pair of polynomials
p1(0), py(¢t) such that the elements x; — x?p;(x;) commute (C). Then the ideal
commutator of R is nil, and the nilpotent elements form a commutative ideal. Thus
R satisfies a multilinear identity of degree 4 (Theorem 3). This result applies
obviously to the rings subject to condition (Cy) (since (Cp) is a stronger
condition).

Conventions. All polynomials are polynomials over the integers Z with the
indeterminate ¢. We denote by & the set of polynomials g(s) of the form
g =t — 2p(1). Clearly & is a multiplicatively closed subset (under composi-
tion). Given the ring R, we denote by Z the center of R, by J the Jacobson
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radical of R, by N the prime radical of R. If X is a subset of R, Cp(X)
= {a € R,ax = xa, all x € X}. The commutator x,x, — x,x; of the pair
(x;,x,) is denoted by [x;, x,]. Finally the rings considered here need not be
with 1.

1. Preliminary results. We collect some of the facts to be used for our main
result (Theorem 3). Remarks 1-4 are known and easy. Although Remark 8 is
essentially proven in [4], we have given its complete proof for convenience of
the reader.

REMARK 1 (JACOBI’S IDENTITY). [xp,a] = [x,aly + x[y,a]. If then [x,a] = 0
it follows that [xy,a] = x| y,a].

REMARK 2. If I is a right ideal of R, I - [Cg(I),R] = 0.

REMARK 3. If R is prime, and if I # 0, Cx(I) = Z.

REMARK 4. If R is prime, and if I is commutative, R = Z.

Recall that an element x; of R such that x;, + x; + xyx; = 0 for some x;
commuting with x, is called quasi-regular. Then 1 + x, is invertible with
inverse 1 + x; (formally). The quasi-inner automorphlsm X B> x + xpx + xxg
+ xoxxg is denoted as usual by x = (1 + xg)x(1 + xo)

REMARK 5 [4]. If x is quasi-regular,

[x0,a](1 + xo)_l =a—(1+ xpa(l + xo)_l

REMARK 6 [4]. If A is an additive subgroup of the ring R, which is preserved re
quasi-inner automorphisms, and if I is a quasi-regular right ideal, then A N I
= 0 implies A C Cg(I).

REMARK 7 [4]. If A is as in Remark 6, and if A contains no nilpotent elements,
for any a € A with au = 0, we have uRa®> = 0. Thus if R is prime, A has no
divisors of zero on R.

REMARK 8 (BRAUER, HERSTEIN). Suppose that the sequence (x, z, by,by) in R
has the following properties:

(i) z, by, b, commute pairwise;

(i) x, —z # 0, zx are quasi-regular;

(i) If ¢; = [x,b;] is a zero divisor then ¢; = 0,

() [(1 + x)b,(1 + x)7 1,51 = 0, [(1 + zx)b2(1 +2x)7L 5] = 0.

Then at least one of the c;’s must be 0.

PROOF. Let g, = (1 + x)by(1 + x)™' and a, = (1 + zx)by(1 + )" We
have by (iv),

V) @, 8] = [a;,8,] = 0,
and we have

(E) (1 + x)by = a;(1 + x), (1 + zx)by, = ay(1 + x).
An elementary operation gives
(E,) (z = 1)by = za) — ay + (za; — a,2)x.

Now by (i) both b, and z commute with b, so, [(z — 1)b,,b,] = 0. Also 2z,
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a;, a, commute all with b, ((v)), thus [zq; — a;,b;] = 0. Since by Jacobi’s
identity [(za) — a,2)x,b)] = (za; — a,2)[x, b;], we see that (E,) implies

(Es) (zay — ay2) - [x,b] = (zay — @y2)c; = 0.

If then ¢; # 0 is a nonzero divisor, (E;) gives za; — a;z = 0. Going back to
(E,) we get

(Ey) byz—1)= (= 1)by =zay —ay = ayz — ay = ay(z — 1),

that is, (by — a,)(z — 1) = 0,50, (z — 1) (b, — @,)(z — 1) = 0, consequent-
ly b, = a,. From the second equation in (E,) follows [b,,zx] = 0. Since
[by,2] = 0 we get z[b,,x] = 0, s0, z - ¢, = 0. Since c, is a nonzero divisor or
0 and since z # 0, ¢, = 0 necessarily, thereby proving Remark 8.

REMARK 9. Let R be a prime ring having a radical (J # 0). Any commutative
subgroup A of R containing no nilpotent elements, which is preserved re quasi-
inner automorphisms, must be contained in the center.

ProOF. If 4 N J = 0, then by Remark 6, 4 C Cr(/), and by Remark 3,
Cr(V) = Z,50 4 C Z. If, on the other hand, 4 N J # 0, choose z # 0 in
AN J,and anya € 4, x € J. If by = b, = a, the sequence (x,z, b;, b,) has
all the requirements as in Remark 8. Let us show, for example (iii). Let
¢ = [x,a]. If ¢ # 0, then ¢(1 + x)_l # 0 is in 4 (Remark 5). By Remark 7,
A has no divisors on R, thus ¢(1 + x)_| is a nonzero divisor. It follows that ¢
is a nonzero divisor (or zero). Applying Remark 8 we see that ¢ = 0
necessarily, that is, [x,a] = 0. Thus 4 C Cgx(J) = Z as wished.

REMARK 10. Let &y be a closed set of polynomials. Suppose that for every
(a,,a,) there is (g,,8,) € &) X & such that [g,(a,),g,(a,)] = 0. Let a, x € R
with the following conditions.

(i) —a, x, ax are quasi-regular;

(i) [x,8q(a)] has no proper divisors of zero on R.

Then for some g € &, [x,g(a)] = 0.
ProOF. Applying (Cy) for ((1 + x)a(l + x)™',a) we get for some g,

S 80,
[(1 + x)g @ + %)~ k()] = 0.
Apglying (Cp) for [(1 + ax)g (a)(1 + ax)_l,hl (@)] we get for some g, h,
(S 0>
[(1 + ax)g, (g (@)(1 + ax)™", by (y (a))] = 0.

Setting b, = h,(h(a)), b, = g,(g,(a)), z = a, we see that (x, z, b, b,) satisfies
the hypothesis in Remark 8, so [x,b;] = 0 or [x,b,] = 0, with b, = g(a), some
g € &.

2. Cohypercenter. The \analog with respect to condition (C) (see Introduc-
tion) of Herstein’s hypercenter [4] is the following set T = T(R).
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DEFINITION. a € T if and only if given x € R there exists p(t) such that
l[a,x — x2p(x)] = O, where p(t) is a polynomial having integral coefficients
depending on (a, x).

Let us call T the cohypercenter of R. We wish to get the property T = Z for,
at least, the class of semiprime rings.

REMARK 11. Given a, b € T and x € R, there is p(t) such that [a, x — x*p(x)]
= [b,x — x*p(x)] = 0.

PrOOF. Since a € T there is g, € & (= {r - 2Z[1]}) such that [a, g (x)]

= 0. Since b € T thereis g, € & such that [b,g,(g(x))] = 0.1f g = g; ° g,
then g € &, and [a,g(x)] = [b,g(x)] = 0.

REMARK 12. T is a commutative subring evidently preserved re quasi-inner
automorphisms.

PrROOF. Given a, b € T and x there is g € & such that [a,g(x)] = [b,g(x)]
= 0 (Remark 11). Thus [a * b,g(x)] = [ab,g(x)] = 0, and x € Cg(Ty),
where Tj is the subnng of R generated by a, and b shows that T is a subring
and that x — x?p,(x) = g,(x) € Z(Ty), all x € Ty C R. By Herstein [3], T
is commutative. Therefore [a,b] = 0, all a, b € T, that is, T is commutative.

REMARK 13 [2,LEMMA 2]. Let V "be a space over the division ring D. If f is a
linear transformation sending each VE VI YA A € D, depending on v, and
if dim V > 1, then f is induced by a scalar (central element A of D).

THEOREM 1. If R is any semiprime ring, the cohypercenter of R is precisely the
center of R.

PrOOF. We prove the assertion by a step-by-step reduction from division
rings to the considered rings.

First if R is a division ring, it is clear that T = Z (Remark 9, and Brauer,
Cartan, Hua result).

Next if R is a primitive ring, which is not a division ring, then by the density
theorem, R acts densely on a space V over the division ring D with a
dimension > 1. Let VEVandletae T.If v and va were not collinear,
by the density action of R, there is x € R with vx=0and v ax_ = . Since
a € T, thereis y = g(x) = x — x*p(x) with [a,y] = 0, whence, uay = uya
Now

Vay = vax — vax(xp(x))=7 — v (xp(x)) = v;

but, ;ya = Zx(l — x(p(x)))a = 0, a contradiction. This shows that va
= ;)\, some A € D. By Remark 13, a is induced by a scalar in D. Therefore
a € Z(R).

Next if R is semisimple (J = 0), then R is a subdirect product of primitive
rings R. By the above T = T(R) = Z = Z(R). Since T maps into T, T is
central in R. Therefore T = Z.

Next suppose that R is prime but not semisimple. If a®> = Owitha € T, we
claim that a = 0. In fact if a # 0,1 = aR # 0. Since a € T, for every
x € R, there is g € & such that [a,g(ax)] = 0. Thus for some p(t) axa

= (ax) p(ax)a Multiplication on the right by x gives (ax) (ax) p(ax)
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Therefore y* = »° p,(y), ally € I. Now if I were nil, y*=0,ally € I, 50, R
would contain a nilpotent ideal (Levitski’s result), a contradiction. This shows
that the 7-regular ring / must contain some idempotent e # 0. If Ry = eRe,
this is a nonzero prime ring verifying again y* = y3py( y) (since Ry C eR
C I). Since by [2], R, satisfies a polynomial identity and since R is w-regular,
R, is the ring of matrices over a division ring. Thus Ry, whence R, have
nonzero socles, contrary to the choice of R. This shows that a = 0 necessarily,
and T contains no nilpotents, By Remarks 12 and 9, T = Z follows.

All in all, we have shown that if R is prime, T = Z. We go back to the
semiprime ring R. Since R is a subdirect product of prime rings satisfying the
desired conclusion, it follows that T = Z, thereby proving the theorem.

3. The main result.

REMARK 14. If R satisfies (C), any nilpotent element a must belong to T.

ProoF. Given a, b € R, we claim that for any given integer n, there is
n > ngsuch that [a — a"p,(a),b — bzpz(b)] = 0. In fact, by the basic proper-
ty, [a - a2pl (a),b — bzpz(b)] =0.If q = azpl (@), b, = b — b2p2(b), there
are p|;, py, such that

[a, - alzpn(a)» b - bl2 pn(b)] = 0.

Now the first commutator relation gives [a — a;,b; — b12 Pyn(b)] = 0. Adding
to the preceding, we get for some p,, (1), [a — at- Py (a), b — b2p22(b)] =0.
Continuing in this way, we see that for any ny, n = 2" will do. If then a is
nilpotent of index n, for any b € R,

[a ~ a®*p, (a),b — b*ps(b)] = [a,b — b?pj(b)] = O
tell us thata € T.

THEOREM 2. If R is a semiprime ring satisfying (C), then R is commutative.

ProoFr. First suppose that R is a division ring. Let ¢, x € R. If condition (i)
in Remark 10 does not hold, then evidently [a,x] = 0. If, on the other hand,
(i) holds, by Remark 10, [x,g(a)] = 0, some g € &. This shows that for any
x € R, x € T. By Theorem |, R = Z.

Next suppose that R is primitive. Every homomorphic image R of a subring
of R inherits condition (C), which in view of Remarks 14 and 12, tells us that
in R the nilpotent elements commute. Since this is patently false for the matrix
rings over division rings of rank > 1, by a routine argument, R must be a
division ring, so, by the above, R must be a field.

Having proved the assertion for the primitive rings we derive, as before, that
it holds for the semisimple rings.

Next suppose that R is prime but not semisimple. Since R is evidently
semiprime, T = Z (Theorem 1). By Remark 14, R has no nilpotent elements.
It follows that R has no divisors of zero. Thus the ring J is a ring subject to
condition (C), and has no divisors of zero. Let x, a € J. The pair (a,x) satisfies
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the hypothesis of Remark 10. Consequently for some g € &, [x,g(a)] = 0.
This shows that x € T(J), all x € J. By Theorem 1, J = Z(J) follows, and
by Remark 4, R = Z.

Having proved the assertion for the prime rings we derive the desired result.

Let R be any ring subject to condition (C). Since the factor ring R/N inherits
(C) and is semiprime, Theorem 2 applies and yields R/N commutative,
whence, R/N has no nilpotent elements. This means that N is the set of
nilpotent elements of R. By Remark 14, N C T is also commutative. If then /
is the ideal commutator of R, I C N is commutative, so R satisfies the identity
[[x,,x,], [x3,x4]] = 0. Summarizing we get the main result.

THEOREM 3. Suppose that for each pair x|, x, in the ring R there exists a pair
(p, (1), py(1)) of polynomials with integral coefficients such that the elements
x; — x; p;(x;) commute. Then the ideal commutator of R is nil, and the nilpotent
elements form a commutative ideal.

One final remark is in order.

REMARK 15 (4 noncommutative ring as in Theorem 3). We observed earlier
that the rings R subject to the condition (Cy) (see Introduction) satisfy (C), so,
the conclusion in Theorem 3 holds for such a class. One could wonder if the
latter rings are commutative. If R is the ring of matrices R = (§£) over the
field F, and if F is algebraic over a finite field, it was verified in [1] that for
every x € R, either x> = O or x = X" p(x) > 1. Thus R satisfies condi-
tion (Co) re the commutative subring, even commutative ideal, 4 = J = ().
Here N = J is the set of nilpotent elements, and R/N ~ F X F is in fact
commutative. Is this example the most general one for the noncommutative
subdirectly irreducible rings R subject to (C)? If true this would give that the
ideal commutator of any ring R with (C) is a square-zero ideal.
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