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GROUP RINGS WITH SOLVABLE «-ENGEL UNIT GROUPS'

J. L. FISHER, M. M. PARMENTER AND S. K. SEHGAL

Abstract. Let KG be the group ring of a group G over a field of

characteristic p > 0, p ^ 2, 3. Suppose G contains no element of order p (if

p > 0). Group algebras KG with unit group U(KG) solvable and n-Engel

are characterized.

Let ATG be the group ring of a group G over a field K of characteristic

p > 0 and let U(KG) denote its group of units. Several authors including

Bateman [1], Bateman and Coleman [2], Motose and Tominaga [10] and

Khripta [5] have studied the question as to when U(KG) is solvable or

nilpotent. Khripta in a beautiful paper [5] has proved that if p > 0 and G has

a /7-element then U(KG) is nilpotent if and only if G is nilpotent and the

derived group C is a finite /?-group, settling the nonsemiprime case. This,

incidently, is equivalent to saying that KG is Lie nilpotent (see [11] and [14]).

Khripta also has some results in her thesis on the nilpotency of U(KG) in the

semiprime case. We investigate when U(KG) is a solvable n-Engel group;

more precisely we prove

Theorem. Suppose KG is a group ring over a field K of characteristic p > 0,

p=£2,3. Suppose G has no element of order p (if p > 0). Then the following are

equivalent.

(i) U(KG) is solvable and n-Engel.

(ii) G is solvable and m-Engel and one of (a), (b) holds.

(a) T(G), the set of torsion elements of G, is central in G.

(b) \K\ = 2P — \ = p, a Mersenne prime; T(G) is abelian of expo-

nent (p2 - 1) and for x G G, t G T(G), xt # tx => x" vx = tp.

(iii) U(KG) is nilpotent.

We are indebted to the referee for several useful comments.

1. Notations and definitions. For group elements x, y we write the com-

mutator (x, y) = x>>x ~ ly ~' and

(x, y,y, . . . , v-) = (x, y,^^y)y{x, y, . . . ,y)    y~\

A group H is «-Engel if it satisfies

(x, y, . . . ,y\ = I    for all x,y G H
n
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and fixed n. Let F be the multiplicative group of a field F. We denote by

& = & (F), the ring of endomorphisms of F. We write/" for the image of/

under a for f E F, a E &. Thus/a + ̂  = fa ■ f0 andf0 = (fa)0.

By a crossed product K(G, pgh, ag), we understand the set of finite sums,

{2&,I,|/v, E K, gt E G) where £, is a symbol corresponding to gl and p:

G X G -> K is a factor system and ag is an automorphism of K for each

gEG. Equality andaddition are defined componentwise. And, for g, h E G,

k E K, g ■ h = pg h gh, gk = k°*g where p and a are required to satisfy the

necessary conditions for K(G, pgh, ag) to be a ring. For details, we refer to [3].

As a special case, if we have ag = / for all g G G, we call

K(G,pg,h,I)=K'(G)

the twisted group ring (see [12]). If

Pg,h = 1    for a11 g,h E G,

we call /l(G, 1, ag), the skew group ring and denote it by Ka(G). And, of

course, if also ag = I for all g E G, we have the (ordinary) group ring. We

shall have occasion to use both skew and twisted group rings.

2. The skew group ring of an infinite cyclic group. Let F be a field contained

in KG. Suppose that x E G has infinite order, (x) is linearly independent

over F, and that x induces an automorphism a = ax of F by conjugation, i.e.

a: /—> xfx~l = /". Then we have an isomorphic copy of the skew group ring

Fa<» contained in KG. Hence Fa(x} = {'Zfx'lf G F] where addition and

equality are componentwise and xf = fax. We investigate Fa<x> in this

section.

Lemma 2.1. For all f E F, we have

(2.2) {fx1x1^^x)=f(l-a)m.

m

Proof. We use induction on m. Notice that

(/, x) = fxf-'x'1 = /■ (/-')"=/./- = /»->.

Suppose we already know that (2.2) holds for m; then

(^iiv^)=/l'°)"l(/""",*r'x"'
771+ 1

= /(|-a)V~(1~a)V' =/o-«r+l.

The lemma is proved.

Proposition 2.3. Let F be an infinite field of characteristic p > 0 and a be

an automorphism of finite order. Suppose that in Fa<[x)> we have

(/, x^x^^^x) = 1    for allf E F.
777

Then Fa(x} — F<x>, i.e. a is the identity automorphism.

Proof. We have by the last lemma, for all / G F,
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I   _   /(l-a)"_ /2?(-')'(")«'

Let s > 1 be the order of a. Choose a prime q > max(/>, m) of the form

2sk + 1. Then

]   _   H\-a)"_=   rz)( 9 V-D'o'

The finite automorphism group /, a, a2, . . . , as~l satisfies

*(/,a(/),...,a'-'(/))-0

with

*(*„ *„...,*,_,)

(2.4) = A-0 (^ • *«■ • *«' • • • X? - XjI' ■ Xh ■ ■ ■ X%> ),

r + t *•> s — I,

and a = |22i0(_ ^(pl- Since a = 1 mod <?, (2.4) is a nontrivial polynomial,

contradicting Artin's theorem on the algebraic independence of auto-

morphisms of an infinite field [6, p. 228]. Hence s = 1 and a = I.

Proposition 2.5. Let F be a finite field of pa elements. If Fa(x) satisfies

(/, x, x, . . . , x ) = 1    for all f G F,
m

and a is not the identity automorphism; then, f = f for all f G F and

\F\ = p , where p is a Mersenne prime.

Proof. Since/" = /^ for some/' < a, we have that

(/, x, x, . . . , x) = f°-a)m= /('-^)",= l    for all/ <= F.

m

Therefore, (pa — 1) divides (pJ - \)m. Hence,

(2.6) any prime divisor of (pa — 1) divides (pJ — 1).

We claim that (2.6) implies a = 2. Let j be the smallest natural number

such that (2.6) holds for a fixed a. Then writing, a = jq + r,

p° -   J   = pM*r _   I   _ prrpM _   j) +  <pr _   ^

it follows that any prime divisor of (pa - 1) is a divisor of (pr — 1). We may

thus assume that a = jq. We have now that any prime divisor of (pj)q — 1 is

a divisor of (pj - 1). It is easy to see (cf. [9]) that q = 2 and pJ = 2Y - 1. It

follows by [15, p. 335] thaty = 1. Thus a = 2. We have therefore proved that

|F| = p2, p = 2* - 1 and hence/" = f.

3. Proof of the theorem. We need the following crucial result of Lanski.

Theorem 3.1 (Lanski). Let R be a semiprime ring which is 6-torsion free. If

U(R) is solvable, then all idempotents of R are central.

Proof. See [7, Lemma 5] and [8, Theorem 9 and §1].
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We shall prove that (i) => (ii) ==> (iii) => (i).

3.2 (i) =» (ii): Let g and h be elements of finite order of G. Since

o(g)

e = (l/0(g)) 2   g<
l

is an idempotent, <g> is normal by (3.1). Also </>> is normal. Thus T0 = <g,

h} is a finite normal subgroup of G. Now,

K7o = 2(A),,,

a direct sum of full matrix rings (Dt) over division rings Dr It follows by [4]

that each nt = 1 and each Di is a commutative field F,. Hence gh = %. Thus

T= TiG), the torsion elements of G form a normal abelian subgroup of G.

Let xEG, xET and let T0 be a finite subgroup of T. Suppose that x does

not commute with T0 elementwise. Since every finite subgroup is normal in G,

the skew group ring (AT0)a<x> is contained in KG, where a is the auto-

morphism of KTQ induced by conjugation by x. Now, AT0 = 2®F;, where F,

are fields. Also,

(3.3) KG D (KT0)a(x) - (2*l) <*>-   2 (*;)«<*>■

The last isomorphism follows because every idempotent is central in KG by

(3.1)and jcF,*"1 = Fr

We can conclude from (3.3) that the unit group of each (F,.)a<jc> is n-Engel.

Since Ft is algebraic over K, it follows by Propositions 2.3 and 2.5 that

\K\ = p or p2, wherep is a Mersenne prime. If \K\ = p2 then

|F,.| = |/q=> F, = e( AT0) = <?A-,       e2 = e.

Since  every  idempotent  is central,  F,  commutes with x. Thus we  have

\K\ = p = 20 - 1. It remains to prove that T^~l) = 1 and

xt ¥= tx,        l G T0 => x_1/a: = /''.

We first make two observations. Write T0= E X A, where F is a 2-group

and A is an odd group.

3.4. A is central.

Let g E A, then since x2 is central, <jc, g)/(x2) is a nilpotent group of

order 2 ■ 0(g). Thus xgx-1 = gx2' and also xgx"1 = g' as <g> is normal in

G. Hence xgx ~' = g.

3.5. If g and /> are nonidentity elements of T0 then (1 - g)(l — h) ^ 0.

This is because the coefficient of identity in this product is 1 or 2 and p ^ 2.

Suppose that Fq^2-" ^= 1. Choose g, h G T0 with hxh~l =t I and /j'2-1

=£ 1. Then

«" = (1 - ^2"')(1 - hxh~i)^0.

Therefore, there exists an Ft and a homomorphism

(3.6) X:KT0^Fi
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with \(ir) + 0. Thus A(gy2_l ¥= 1 and |F,| > p2. Since A(rjx/T') ¥= 1, we have

\(hx) = r\(h)* =£ \(/j) ancl f. js not central, contradicting Proposition 2.5. We

have therefore proved that T&p _1) = 1.

In order to complete the proof of the implication (i) => (ii) it suffices to

prove

(3.7) ger0,      xg =£ gx => x" 'gx = gp.

We can write g = gxg2, 0(gx) = 2s and 0(g2) a divisor of (p - l)/2. Since

£2 = £2 and Si is central due to (3.4), we have only to prove that x"'giX

We may assume that s > 1. Suppose that K(gx} = F, © F2 © ■ ■ ■ , \FX\

= p2 = \F2\ und gx = (|, tj, . . . ), x_lg,x = (£p, tj, . . . ). Since x"'g,x = g|,

we have p — i = 0 (mod 4) and i — 1=0 (mod 4) and thus p — 1 = 0 (mod

4) which is a contradiction. Hence x~'gx = gp.

3.8. (ii) =» (iii).
3.9. We assert that every idempotent of KT is central in ATG. If (ii)(a) holds,

the assertion is trivial. So let us assume (ii)(b). Let e = e2 = 2e"gg. Then

e = ep = "Zeggp and therefore eg = egP. Now ex = 2eggx = e, since gx = g

org".

Since G is m-Engel solvable it follows by [13, Theorem 7.36] that G/T(G)

is nilpotent (say of class < c). We have that either T(G) is central or

\K\ = p = 2" - 1 satisfying (ii)(b). We shall prove that U(KG) is nilpotent

of class < (c + B + 1). We may therefore assume that G is finitely generated

and, hence, by [13, Theorem 7.34] that G is nilpotent. Therefore T = T(G) is

finite.

We have, KT = 2®^. a finite direct sum of fields. Due to (3.9),

©

KG = (KT)(G/T, p, a) = ^F((G/T, p, a).

Since G/T is ordered, U(KG) = ll®/", • G/T. It suffices to prove that F, •

G/T is nilpotent of class < c + B + 1. This is clear if a is trivial, i.e. if /•)

and G/T commute. We may therefore suppose that we have |/T| = p2,

p = 213 — 1 and we wish to prove that F- ■ G/T is nilpotent of class < c + B

+ 1. It is easy to see that Ft c zB+\, the (B + l)th term of the upper central

series of (Ft ■ G/T). Since G/T is nilpotent of class < c, Ff- G/T is nilpo-

tent of class < (c + B + 1).

3.10. (iii) => (i) is trivial.
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