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EXISTENCE OF A FIXED POINT FOR

NONEXPANSIVE MAPPINGS WITH CLOSED VALUES

J. T. MARKIN

Abstract. Fixed point existence and fixed point stability results are

presented for nonexpansive mappings of a Banach space B into the family of

nonempty closed bounded convex subsets of B, where B is assumed

separable, strictly convex, and reflexive with a weakly continuous duality

mapping.

The study of the existence of a fixed point for nonexpansive set valued

mappings was initiated in [7] for Hilbert space and extended in [6] to Banach

spaces satisfying Opial's condition and in [5] to strictly convex reflexive

Banach spaces with weakly continuous duality mapping. All of these results

have assumed the mappings have compact values. In Theorem 1 the nonex-

pansive mapping is assumed to have closed bounded convex values and

existence of a fixed point is shown for separable strictly convex reflexive

Banach spaces with weakly continuous duality mapping. This class of spaces

includes separable Hilbert spaces and the / spaces, 1 < p < oo.

The family of nonempty closed bounded convex subsets of a Banach space

B is denoted by K(B). Let D denote the Hausdorff metric defined on the

closed bounded subsets of B, which is generated by the norm ||-|| of B. A

mapping F of B into K(B) is nonexpansive if D(F(x), F(y)) < \\x — y\\ for

x,y E B.

A mapping J of a Banach space B into its dual B* is a duality mapping if

(x,J(x)) = \\x\\ \\J(x)\\ and ||7(jc)|| = p(||x||) for x E B, where p is a nonne-

gative nondecreasing function on Rx with p(0) = 0. A duality mapping J is

said to be weakly continuous if it is continuous from B with the weak topology

into 6* with the weak*-topology. Weak convergence of a sequence {x,} to a

point x is denoted by xt —*■ x.

A mapping F of a Banach space B into itself is ./-monotone provided for

any pair x, y E B and xx E F(x) there is a v, E F(y) such that (xx - yx,

J(x — y)) > 0, where J is a duality mapping on B.

For any mapping F of B into the nonempty subsets of B and any subset C

of B, F(C) denotes lAxeCF(x). A point y E B is a fixed point of F if

y g F(y).
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The following two lemmas extend similar results in [5] for compact valued

mappings.

Lemma 1. Let B be a strictly convex reflexive Banach space with a weakly

continuous duality mapping J, and F a continuous mapping of B with the norm

topology into K(B) with the Hausdorff metric D. If for a given pair x, xx G B and

any y G B there is a yx G F(y) such that (xx - yx,J(x - y)) > 0, then

xx  G F(x).

Proof. Let x, xx .be elements of B such that for any y G B there is

yx G F(y) satisfying (yx - xx,J(y - x)) > 0. Suppose xx £ F(x). Since F(x)

is weakly compact and convex there is a continuous linear functional w strictly

separating xx and F(x); i.e., (xx,w) < (z,w) for z G F(x). Ko [5] has shown

that if B is reflexive then a weakly continuous duality mapping maps B onto

B* and therefore w = J(u) for some u G B. Hence,

(1) (xx,J(u))<(z,J(u))

for z G F(x).

Setting un = x — u/n, n = 1,2,..., there is by assumption for each un a

zn G F(un) such that

(2) (*, - zn,J(x - «„)) = (xx - zn,J(u/n)) > 0.

By a result of Browder [3] the strict convexity of the norm of B implies that

J(u/n) = J(u)/n. Inequality (2) can then be written as

(3) (x, - zn,J(u)) > 0

for each n.

By the continuity of F, D(F(un),F(x)) tends to 0 and therefore we may

assume that {zn} converges weakly to a point z0 and that there is a sequence

{y„},yn G F(x) for which lim^^ \\zn - yn\\ = 0, where y„ — y0 G F(x). We

assert that z0 G F(x) so that by inequality (3), (xx,J(u)) > (z0,J(u)), contra-

dicting (1). Indeed, if z0 G F(x) there is a continuous linear functional v such

that (z0,v) < (y0,v) and hence

0 > (z0-y0,v) = (z0-zn,v) + izn-yn,v) + (y„-y0,v).

The right side of the latter equality tends to 0, which is not possible.

Lemma 2. Let B be a separable strictly convex reflexive Banach space with

weakly continuous duality mapping J, C a weakly compact subset of B, and F a

continuous J-monotone mapping of B into KiB) with the Hausdorff metric D.

Then FiC) is closed.

Proof. Let v0 lie in the closure of FiC). Then there is a sequence {f,} such

that lim^^y, = v0, where vt G F(ut), w, G C and, by weak compactness of

C, it is assumed that ut -»■ u0 G C. The assumption that v0 G F(C) will be

shown to lead to a contradiction.
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For some x G fi it must be the case that there is a 8 > 0 such that

(4) (z - v0,J(x - u0)) < -8

for each z E F(x); for otherwise Lemma 1 would imply that v0 E F(u0). For

each nonnegative integer y let B- = F(x) - v=. Since v- -> v0, the sequence {BA

converges to B0 in the Hausdorff metric D.

Choose a closed ball S in B which contains the sets {BA,j = 0, 1, .... By

the reflexivity of B the ball S is weakly compact and by [4] the weak topology

on S is metrizable. Metrizing the weak topology on 5 by

»    1      \xn(a- b)\
d(a, b) =   2   ^ y—,—-,-rc,

„=\ 2   1 + \xn(a - b)\

where {xn} is a countable dense subset of the unit ball of B* and a, b E S, it

is easily seen that [BA converges to B0 in the Hausdorff metric H generated by

d. Indeed,

*«< J, ?rtt?il <(!?)■-*«
implying that

H{A,B)< (%Jn)D{A,B),

where A, B are weakly closed subsets of S.

Define the functionals {Lj on B by Lt(y) = sup >j(y,J(x - uA),y E B.

Since the functionals {(-,J(x - «■))} are linear and, hence, convex, each Li is

a convex functional [2],

Let the function L denote an arbitrary member of (Lf). We claim that L is

continuous on S with the weak relative topology. Since L is bounded on any

norm bounded subset of B, assume that L(y) < A for any y E S. Let N(0,5)

be an origin centered open ball of radius 8 in the weak metric topology on S1.

For a E [0,1) it is easily seen that otN(0,8) C A/(0,8). If y E aN(0,8) then

there is a z E N(0,8) for which^ = az and therefore (y/a) E N(0,8). By the

convexity of L,

L((l - a)0 + a(y/a)) < (1 - «)L(0) + aL(y/a).

Since L(0) = 0, L(y) < aL(y/a) < aK. Hence, in the limit as>> approaches

0 in the weak topology L(y) < L(0), which proves that L is upper semicon-

tinuous at 0 in the weak topology on 5. Continuity of L at 0 follows from the

lower semicontinuity of the supremum of continuous functions and the

definition of L. For any other pointy e S appropriate translations reduce the

problem to the case just considered where y = 0 and L(y) = 0.

Since F is /-monotone, for each Uj there is a z e F(x) such that

(zj - Vj,J(x - Uj)) > 0. Thus, for each / > /', sup>,eB.Lt(y) > 0. The maxi-

mum theorem in [1] implies that
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Co lim sup Lj(y) = sup L (y) > 0   for i = 1, 2, ....

For each positive integer ;' let At. = {y G B0: Lt(y) > — l/i). If y G _4(.+)

then, by the definition of the L;, ^.(.y) > L| + |(>>) > -I/O' + 1) > -l/i, and

therefore,7 G y4(-. Thus, Aj+X Q A( and, since the A{ are weakly closed subsets

of the weakly compact set B0, there is a pointy0 G n°L ,/!,•. By the definition

of B0,y0 = z0 - v0 where z0 G F(x), and by (5) for some subsequence

{uk} of {uj}, (z0 - v0,J(x - uk)) > -\/k. Taking the limit in the latter ine-

quality we have (z0 - v0,J(x - u0)) > 0, which contradicts (4).

Theorem 1. Let B be a separable strictly convex reflexive Banach space with

a weakly continuous duality mapping J, and C a closed bounded convex subset of

B. If G is a nonexpansive mapping of B into K(B) with the Hausdorff metric D,

which maps C into itself, then G has a fixed point in C.

Proof. Assume without loss of generality that 0 G C [5]. The proof

consists of showing that 0 is in the closure of (/ - G)(C) and that I—GisJ-

monotone. The theorem then follows by Lemma 2.

Let {kj) Q [0,1) be a sequence which converges to 1, and consider the

sequence of mappings {kjG} of C into K(C). By a result of Nadler [8] each

kjG has a fixed point xk G C. Since xk G ktG(xk) we have xk = kjyk,

whereyk  G G(xk). Therefore,

inf    ILv-^IK K-^.||< (\ - kt)\\yki\\
yEG(xkl)

and the last term tends to 0. This shows that 0 is in the closure of (/ - C7)(C).

G being nonexpansive with closed convex values, given any y G B and

yx G G(y), there is a closest point xx G G(x)  to yx  such that  \\xx — yx \\

< ||x - y\\. It follows that

(Oc -xx)-(y-yx),J(x - y)) > (\\x - y\\ - \\xx - yx ||)\\J(x - y)\\ > 0,

and hence / - G is ./-monotone. Applying Lemma 2 we have 0 G (I — G)

■ (C); i.e., there is an x G C such that x G G(x).

Theorem 2. Let B be a separable strictly convex reflexive Banach space with

a weakly continuous duality mapping J, and C a closed bounded convex subset of

B. Assume that {G,} is a sequence of nonexpansive mappings of B into K(B) with

the Hausdorff metric, which converges pointwise to a nonexpansive mapping G0

and maps C into itself. If x( G C is a fixed point of Gj, i = 1,2,..., and

Xj -*■ x0 then x0 is a fixed point of G0.

Proof. As in the proof of Theorem 1 the mappings / — Gf, i = 0, 1, ...,

are ./-monotone. Since Xj is a fixed point of Gt, 0 G (/ — G()(x() for i = 1,2,

..., and by /-monotonicity for each v G B there is a vt G (I - Gj)(v) for

which

(6) (Vj-0,J(v-Xj)) > 0,        i= 1,2, ....
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Define the sequence of functionals {L(} on B by

Lt(y) = swp(y,J(v - x)).
J>i

As in the proof of Lemma 2 the (L() are continuous on S with the weak

topology. Defining the sequence of weakly compact convex subsets {BA of B

by Bj = (I - Gj)(v), the pointwise convergence of the {Gl} implies that {BA

converges to BQ = (I - G0)(v) in the Hausdorff metric D, and therefore, as

shown in the proof of Lemma 2, the {Bj} converge to B0 in the Hausdorff

metric H generated by the weak metric topology on any ball containing the

{Bj). Inequality (6) implies that for each i, sup eB Lt(y) > 0 forj > i.

Thus, the sequences {L(} and {Bj} satisfy the same conditions as in the proof

of Lemma 2, and therefore there is a point y0 E B0 such that (y0 — 0,

J(v — x0)) > 0. The point v E B was arbitrary and so by Lemma 1, 0

£ (/ - G0)(x0) and x0 is a fixed point of G0.
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