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THE REGULAR GROUP C*-ALGEBRA FOR

REAL-RANK ONE GROUPS

ROBERT BOYER AND ROBERT MARTIN1

Abstract. Let G be a connected semisimple real-rank one Lie group with

finite center and let C*(G) denote the regular group C*-algebra of G. In this

paper a complete description of the structure of C*(G) is obtained.

1. Introduction. Let G be a connected semisimple real-rank one Lie group

with finite center and Lie algebra g. If Gc is the simply connected, complex

analytic group corresponding to gc, we assume, in addition, that G is the real

analytic subgroup of Gc corresponding to g. Let C*(G) denote the regular

group C*-algebra of G, i.e., the completion of LX(G) with respect to the norm

ll/llp = IIIp(/)III where p is the left regular representation of G and |||p(/)|||

denotes the norm of p(f) as a left convolution operator on L2(G). The

purpose of this paper is to give a complete description of the structure of

C*(G) and thus give a partial answer (one for the above G) to a question

raised in [6] as to an intrinsic characterization of C0(G).

Throughout this paper H will denote a fixed separable infinite-dimensional

Hilbert space and %(H) will denote the compact operators on H. We

assume, in addition, that H has been identified with //©//. When T is a

locally compact Hausdorff space, we denote by Cb(T, %(H)) the C*-algebra

of all norm-continuous bounded functions tt-* x(t) of T into %(H) and by

C°(T, %(H)) the C*-algebra of functions in C(T, %(H)) such that ||x(/)||

vanishes at infinity.

The underlying hull-kernel topology on the spectrum of C*(G), Gr, plays a

key role in describing the structure of C*(G) « C0(G). The main difficulty

occurs when Gr is not Hausdorff. When Gr is Hausdorff e.g.,

G = Spin(2« + 1, 1)    for« > 1,

it follows from [2, 10.9.6] that C*(G) is isomorphic to C°(Gr, %(H)).

However, when Gr is not Hausdorff the above theorem no longer applies and

we show, in §3, that it is possible to use the extension theory of C. Delaroche

[1] to determine the structure of C*(G). We first show that C*(G) is

isomorphic to the restricted product of certain C*-algebras whose structures

Received by the editors December 1, 1975.

AMS (MOS) subject classifications (1970). Primary 22D25, 43A40; Secondary 46L25.
Key words and phrases. Semisimple Lie groups, Cartan subgroups, Weyl group, irreducible

unitary representations, left regular representation, principal series, discrete series, reduced dual,

hull-kernel topology, C*-algebras, restricted product.

'Partially supported by NSF-MPS 75-14490.
© American Mathematical Society 1976

371



372 ROBERT BOYER AND ROBERT MARTIN

have concrete descriptions given by [1, Theorem VI.3.8]. Letting SP, GP, and

Gd be as in [8, Volume II], it is then a simple matter to give an alternate

description of C*(G) as the subalgebra of functions in C\1P u Gd, %(H))

which reduce at the points of SP - GP (i.e., the points "responsible" for the

non-Hausdorffness of Gr) by H © H.

We refer to [2] and [8] for all undefined terms and notation.

2. The topology on Gr. In this section we summarize the main results

concerning the representation theory of G and the topology on Gr which we

shall need to describe C*(G). For a more detailed account we refer to [8,

Volume II, Chapter 7 and Epilogue].

Let G = KAN be an Iwasawa decomposition for G, M the centralizer of A

in K, P = MAN (a minimal parabolic subgroup of G), and W = {1, w) be

the Weyl group of G, where w is the unique nontrivial element of W. We let

Gr denote the reduced dual of G i.e., the support of p in G.

Up to conjugacy, either G has a unique noncompact Cartan subgroup or G

has two Cartan subgroups-one compact and one noncompact. Each con-

jugacy class of Cartan subgroups makes its own contribution to Gr. The

noncompact Cartan subgroup contributes the collection of irreducible prin-

cipal series representations, GP, together with those irreducibles which arise as

summands of reducible principal series representations, GP. The compact

Cartan subgroup contributes the so-called discrete series of G, Gd. Let us

briefly recall the parameterizations of these representations given in [8].

If a denotes the Lie algebra of A, the irreducible unitary representations of

A are given by A*(exp H) = exp(isH), s G R, H G a, and so A = {Xs:

s G R}. The hull-kernel topology on A agrees with the usual topology it

inherits as the character group of the abelian group A, i.e., that of R. If n is

the dimension of a maximal torus in the compact group M, then we may view

M as a countable discrete subset of R" and, hence, M X A as a subset of

R"+1 with the relative topology. The Weyl group W acts on M X A as

follows: 1 • (a, s) = (a, s) and w ■ (a, s) = (w ■ a, — s) where w ■ o(m) =

a(w~lmw), m G M. Under the quotient topology, the orbit space 2-p =

(M X A)/ W is locally compact and Hausdorff.

For a G M and Xs G A we form the finite-dimensional irreducible unitary

representation a X Xs of P via (a X Xs)(man) = o(m)Xs(a) and write

77(0-, s) = Ind^o X Xs.

The collection of unitary representations {tt(o, s): a G M, s G R} is called

the principal series of G. It is known that tr(a, s) is irreducible unless

w • a = a and s = 0 and in this case 77(0, 0) may or may not be irreducible

(see [5] or [8, Volume I, p. 462]). When G has a unique Cartan subgroup, the

results of Wallach [7] show that every member of the principal series is

irreducible. If we let R = {a G M: ir(a, 0) is reducible} and I = M - R,

then for a G R it is known that tt(o, 0) decomposes into two inequivalent

representations of G (see [4]) which we shall denote by <n„. It follows from [8,
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5.5.3.3] that 77(0, s) =* tt(o', t) iff there exists a c G W such that c ■ a = a'

and c ■ s = t, i.e., a = a' and s = t or w ■ o = a' and s = - t. Thus we may

identify the collection of principal series representations with £,,.

As in [8, Volume II], we let GP denote the subset of SP consisting of

irreducible principal series representations. A point q G SP — GP has coordi-

nates (o, 0) with a G R and so we may associate to q the pair of representa-

tions 77/ = ttJ1 in Gr (it is this association that makes Gr non-Hausdorff).

Letting GP = {ttJ1 : q G Sp - GP} we have that GP n GP = 0.

When G has a compact Cartan subgroup (iff rank G = 1 + rank M =

rank K), one obtains a family of irreducible, square-integrable, unitary

representations of G called the discrete series of G. Denoting this family by

Gd, we have that Gd n (GP u GP) = 0 and that it is possible to parameterize

Gd by a lattice in R" + 1 [8, 10.2.4]. Thus we may identify Gd with a countable

discrete subset of R"+1 which does not intersect GP u GP and ultimately, Gr

as a disjoint union of the three subsets GP, GP, and Gd of Rn+1.

Theorem (Lipsman). Let Gr be the reduced dual of G. Then

(1) if G has a unique Cartan subgroup, Gr = GP = £p and the hull-kernel

topology on Gr coincides with the natural (Hausdorff) topology of Q,P,

(2) if G also has a compact Cartan subgroup, Gr = GP U GP U Gd (disjoint

union) where both Gd and GP u GP are open in Gr, the topology on GP u Gd is

discrete, and the closure of any subset S C GP consists precisely of those

tt G GP U GP which are associated with the points in the natural closure of S in

3. The structure of C*(G). Since R = {a G M: w ■ a = 0} and I = M — R,

we have M X A = (R X A) u (/ X A) where both R X A, I X A are W-\n-

variant and, in fact, (R X A)/W_= R X [0, 00). Let B = [0, 00) and for

o G R write Ba = {(o, s): s > 0), Ba = {(a, s): s > 0}, and B'a = B„ u {77/}.

Let

<ZR = R X B =  [J B„,    b2, = (I X A)/W   and    £„ = % u Grf.

Then

% = 2, U 2,    and    SP U Gd = ( U b\ u S9.

According to the results of §2, each of the (Hausdorff) fibres Ba in S^ is

associated with the (non-Hausdorff) fibre B'a in Gr where the topology on B'a

is such that as s -»0 in the usual sense, (a, s) approaches both 77* as limit

points in Gr. Thus we may write Gr = (U a£RSo) u Be.

Let Ie denote the ideal in C*(G) with Ie = Be and 7a denote the ideal in

C*(G) with /„ = B'„, o G R. Let % be as in [8, Volume II, p. 50]. Then % is

also a dense self adjoint subalgebra of C*(G) with each element boundedly

represented in Gr. Since each Be and B'a, 0 G R, is both open and closed in

Gr, each Ia, a e. R \j {9}, is a direct summand of C*(G). So for a G .R u
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{0} we may let %.„ denote the canonical image of % in Ia. Then Gila is a

dense selfadjoint subalgebra of /„ having the property that each of its

elements is boundedly represented in la. We now use the extension theory of

Delaroche to give concrete descriptions of these ideals and then prove that

C*(G) is isomorphic to the restricted product [2, 1.9.14] of these ideals.

Proposition 1. (i) Let a G R. Then Ia is isomorphic to the C*-algebra of

pairs

(m, (cx, c2)) G Cb(Ba, %(H)) X (%(H) © %(H))

such that lim,_00w(a, /) = 0 and lim,^0m(a, /) = (cx, c2).

(ii) Ie is isomorphic to C°(BS, %(H)).

Proofs, (i) For a G R, let Ja be the ideal of Ia with Ja = Ba. From [8,

Volume II, p. 50] it follows that Ja is a C*-algebra with continuous trace [2,

4.5.2]. Since H3(Ba, Z) = 0, it follows from [2, 10.9.6] that Ja is isomorphic to

C°(Ba, %(H)). Now Ia is isomorphic to an extension of C°(Ba, %(H)) by

%(H)® %(H), in fact, using [1, Theorem VI.3.8], one can concretely

describe Ia as above once the positive integers m and n are determined in the

equation

limtrir(c, /)(/) = mtr770+(/) + ntr «•"(/),       /G %.

However, the results of [8, Volume II, p. 50] show that m = n = 1 and so (i)

follows.

(ii) Since Ie is Hausdorff and H\le, Z) = 0, (ii) follows from [2, 10.9.6]

since [8, Volume II, pp. 50, 422] shows that IB is a C*-algebra with continuous

trace.

Proposition 2. Let a G R. Then Ia is isomorphic to the subalgebra D of

functions in C°(Ba, %(H)) which reduce at (a, 0) by H © H.

Proof. For/ G D, the pair (m, (cx, c2)) where m(a, t) = f(o, t) for / G (0,

oo) and (c,, c2) = f(a, 0) is clearly in Ia. Since the mapping/t-H> (m, (cx, c2)) is

an isomorphicm of D onto Ia, the proposition follows.

Lemma 1. Let a be a C*-algebra without identity. If a = U \xXn where the Xn

are disjoint nonempty open subsets of a, then a is isomorphic to the restricted

product B of the ideals In, where In = Xn.

Proof. Let C = Uk=x ®k=xh and consider the ideal J = C of a. It is

easy to see that for any 77 G d, 77(7) =£ 0. Thus J = a by [2, 3.2.2]. We now

map C onto a dense subset of B in the obvious way. Since this mapping is an

isometry, it extends to an isomorphism of a onto B.

Theorem 1. C*(G) is isomorphic to the restricted product of the C*-algebras

Ia,oER u{0}.

Proof. Since C*(G) = Gr = (UaSRB„) u Be, this is immediate from

Lemma 1.
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Theorem 2. C*(G) is isomorphic to the subalgebra of C°(2P U Gd, %(H))

of functions which reduce at the points of °lP - GP by H © H. In particular,

when GP = 0, C*(G) is isomorphic to C°(Gr, %(H)).

Proof. By Theorem 1 we have that C*(G) is isomorphic to the restricted

product P of the ideals Ia, a E R u {0} whose structures are given by

Propositions l(ii) and 2. For / = {/,} in P we define the function F on

% U Gd = (Ua£RBa) u B, by F(v) = fa(v) if v G B„, a G R, and F(v) =

fe(v) if v G Be. Then T is easily seen to be a norm-continuous bounded

function on the Hausdorff space blP U Gd for which ||F(f)|| vanishes at

infinity and F(o, 0) = f„(0, 0) = (cx(a), c2(o)) for a G /?. Theorem 2 now

follows since the mapping ft-* F is an isomorphism of P onto the above

subalgebra.

4. Some examples. A. If G = Spin(2« + 1, 1) for n > 1, then G> = 0 (see

[5] or [7]). Since Gd = 0, we have Gr = GP is Hausdorff and

C*(G)~C°(Gr,%(H)).

B. For G = SL(2, R), M = {±e} and we may take M = {0, 1} with

R = {1} and / = {0}. Thus we may identify Gr with the following subset of

R2: GP consists of the two fibres {(0, s): s > 0} and {(1, s): s > 0); GP is a

pair of points at (1, - j); and Gd consists of the infinite collection of pairs of

points at (- 1, -«),« = 1, §, 2,. . . . The hull-kernel topology on Gr is then

the relative topology Gr obtains as a subset of R2 with the one exception that

as (1, s) -»(1, 0) in the usual sense, (1, s) approaches the pair of points at (1,

- \) as limit points. To describe C*(G) we let X = {(0, s): s > 0} u {(1, s):

s > 0} u Gd with the relative topology of R2. C*(G) is then isomorphic to the

subalgebra of C°(X, %(H)) consisting of functions which reduce at (1, 0) by

H ® H.

C. For G = Spin(4, 1), M = Spin(3)« SU(2) and we may parameterize M

by nonnegative half-integers with R = {4, |,. . . }, / = {0, 1, 2, . . . }. Using

the results of Dixmier [3], we may parameterize Gd by pairs of points at (n,

- q) where n = 1, f, 2, . . .  and q - n, n - I.f or 1. Thus Gr can be

identified with the following subset of R2: GP is the collection of fibres {(«,

s): s > 0 if n G / and s > 0 if n G R}; GP is the infinite collection of pairs of

points at («, - |), « G R; and Grf consists of the infinite collection of pairs of

points at (n, -q), n = 1, |, . . . and q = n, ai - 1, . . ., | or 1. Since

G,, J= 0, G^. is not Hausdorff. To describe C*(G) we let X = Uney?u/{(«, 5):

s > 0} \j Gd with the relative topology of R2. Then C*(G) is isomorphic to

the subalgebra of C°(X, %(H)) consisting of functions which reduce at the

points (n, 0), n G R, by H © H.

D. Let G = SOe(«, 1), n > 2, and G' be the two-fold covering of G-so

G' = SL(2, R) for n = 2 and G' = Spin(«, 1) for « > 3. G' then satisfies the

hypotheses of this paper. From [5] we know that even though G' may have

reducible principal series (iff n is even), G does not. Since Gr C G'r has the

relative hull-kernel topology, we see that Gr is Hausdorff [for example, if
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n = 2 and D denotes the subset of Gd (in B) consisting of pairs of points at

(- 1, - n), n = 1, 2, . . . , then Gr = {(0, s): s > 0} u D, while if n = 4 and

D denotes the subset of Gd (in C) of pairs of points at (n, - q), n G /, then

Gr = U„<=/{(«, s): s > 0} u £>]. Thus it follows, as in the proof of Proposi-

tion 1(h), that C*(G) m C°(Gr, C3C (//)).

5. A remark on C0(G). When G is a locally compact abelian group, it is

common to denote the collection of continuous functions on the dual group G

which vanish at infinity by C0(G). In a recent paper [6], R. Lipsman defined

an analogue of this space for separable locally compact unimodular type I

groups as follows: letting dg denote Haar measure on G,

J/(')-/(*)-//(8W«)*

be the Fourier-transform of / G LX(G), |||/(77)||| the operator norm of /(tt),

ll/lloo = ess suPTreclll/C77)!!! (^h resPect to Plancherel measure on G), and

A(G) = cy(Lx(G)), then C0(G) is defined to be the closure of the algebra

A(G) with respect to the norm || • \\x. The question is then raised as to

determining an intrinsic characterization of C0(G). Since C0(G) is easily seen

to be isomorphic to C*(G) (see [6]), the results of this paper seem to indicate

that this will be a difficult problem and that the hull-kernel topology on the

spectrum of C*(G), Gr, will play a key role in determining an intrinsic

characterization of C0(G). In fact, Theorem 2 shows that when G is as in the

introduction of this paper, an intrinsic characterization of CQ(G) must take

the non-Hausdorff nature of Gr into consideration.

We also remark that for amenable groups, C0(G) « C*(G) « C*(G) (the

group C*-algebra of G), and although it is quite easy to describe C0(G) for

abelian or compact groups, we know of no other separable unimodular type I

amenable group for which the structure of C*(G) has been determined.
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