THE REGULAR GROUP C*-ALGEBRA FOR REAL-RANK ONE GROUPS

ROBERT BOYER AND ROBERT MARTIN¹

ABSTRACT. Let G be a connected semisimple real-rank one Lie group with finite center and let $C_{\rho}^{*}(G)$ denote the regular group C*-algebra of G. In this paper a complete description of the structure of $C_{\rho}^{*}(G)$ is obtained.

1. Introduction. Let G be a connected semisimple real-rank one Lie group with finite center and Lie algebra g. If $G_{\rm C}$ is the simply connected, complex analytic group corresponding to $g_{\rm C}$, we assume, in addition, that G is the real analytic subgroup of $G_{\rm C}$ corresponding to g. Let $C_{\rho}^{*}(G)$ denote the regular group C*-algebra of G, i.e., the completion of $L_1(G)$ with respect to the norm $\|f\|_{\rho} = \||\rho(f)\|\|$ where ρ is the left regular representation of G and $\||\rho(f)\|\|$ denotes the norm of $\rho(f)$ as a left convolution operator on $L_2(G)$. The purpose of this paper is to give a complete description of the structure of $C_{\rho}^{*}(G)$ and thus give a partial answer (one for the above G) to a question raised in [6] as to an intrinsic characterization of $C_0(\hat{G})$.

Throughout this paper H will denote a fixed separable infinite-dimensional Hilbert space and $\mathcal{K}(H)$ will denote the compact operators on H. We assume, in addition, that H has been identified with $H \oplus H$. When T is a locally compact *Hausdorff* space, we denote by $C^b(T, \mathcal{K}(H))$ the C^* -algebra of all norm-continuous bounded functions $t \mapsto x(t)$ of T into $\mathcal{K}(H)$ and by $C^0(T, \mathcal{K}(H))$ the C^* -algebra of functions in $C^b(T, \mathcal{K}(H))$ such that ||x(t)||vanishes at infinity.

The underlying hull-kernel topology on the spectrum of $C^*_{\rho}(G)$, \hat{G}_r , plays a key role in describing the structure of $C^*_{\rho}(G) \approx C_0(\hat{G})$. The main difficulty occurs when \hat{G}_r is not Hausdorff. When \hat{G}_r is Hausdorff e.g.,

$$G = \operatorname{Spin}(2n + 1, 1) \quad \text{for } n \ge 1,$$

it follows from [2, 10.9.6] that $C_{\rho}^{*}(G)$ is isomorphic to $C^{0}(\hat{G}_{r}, \mathcal{K}(H))$. However, when \hat{G}_{r} is not Hausdorff the above theorem no longer applies and we show, in §3, that it is possible to use the extension theory of C. Delaroche [1] to determine the structure of $C_{\rho}^{*}(G)$. We first show that $C_{\rho}^{*}(G)$ is isomorphic to the restricted product of certain C*-algebras whose structures

© American Mathematical Society 1976

Received by the editors December 1, 1975.

AMS (MOS) subject classifications (1970). Primary 22D25, 43A40; Secondary 46L25.

Key words and phrases. Semisimple Lie groups, Cartan subgroups, Weyl group, irreducible unitary representations, left regular representation, principal series, discrete series, reduced dual, hull-kernel topology, C^* -algebras, restricted product.

¹Partially supported by NSF-MPS 75-14490.

have concrete descriptions given by [1, Theorem VI.3.8]. Letting \mathcal{Q}_P , \hat{G}_P , and \hat{G}_d be as in [8, Volume II], it is then a simple matter to give an alternate description of $C^*_\rho(G)$ as the subalgebra of functions in $C^0(\mathcal{Q}_P \cup \hat{G}_d, \mathcal{K}(H))$ which reduce at the points of $\mathcal{Q}_P - \hat{G}_P$ (i.e., the points "responsible" for the non-Hausdorffness of \hat{G}_r) by $H \oplus H$.

We refer to [2] and [8] for all undefined terms and notation.

2. The topology on \hat{G}_r . In this section we summarize the main results concerning the representation theory of G and the topology on \hat{G}_r which we shall need to describe $C^*_{\rho}(G)$. For a more detailed account we refer to [8, Volume II, Chapter 7 and Epilogue].

Let G = KAN be an Iwasawa decomposition for G, M the centralizer of A in K, P = MAN (a minimal parabolic subgroup of G), and $W = \{1, w\}$ be the Weyl group of G, where w is the unique nontrivial element of W. We let \hat{G}_{e} denote the reduced dual of G i.e., the support of ρ in \hat{G} .

Up to conjugacy, either G has a unique noncompact Cartan subgroup or G has two Cartan subgroups-one compact and one noncompact. Each conjugacy class of Cartan subgroups makes its own contribution to \hat{G}_r . The noncompact Cartan subgroup contributes the collection of irreducible principal series representations, \hat{G}_P , together with those irreducibles which arise as summands of reducible principal series representations, \hat{G}_q . The compact Cartan subgroup contributes the so-called discrete series of G, \hat{G}_d . Let us briefly recall the parameterizations of these representations given in [8].

If a denotes the Lie algebra of A, the irreducible unitary representations of A are given by $\lambda^s(\exp H) = \exp(isH)$, $s \in \mathbf{R}$, $H \in a$, and so $\hat{A} = \{\lambda^s: s \in \mathbf{R}\}$. The hull-kernel topology on \hat{A} agrees with the usual topology it inherits as the character group of the abelian group A, i.e., that of \mathbf{R} . If n is the dimension of a maximal torus in the compact group M, then we may view \hat{M} as a countable discrete subset of \mathbf{R}^n and, hence, $\hat{M} \times \hat{A}$ as a subset of \mathbf{R}^{n+1} with the relative topology. The Weyl group W acts on $\hat{M} \times \hat{A}$ as follows: $1 \cdot (\sigma, s) = (\sigma, s)$ and $w \cdot (\sigma, s) = (w \cdot \sigma, -s)$ where $w \cdot \sigma(m) = \sigma(w^{-1}mw)$, $m \in M$. Under the quotient topology, the orbit space $\mathcal{Q}_P = (\hat{M} \times \hat{A})/W$ is locally compact and Hausdorff.

For $\sigma \in \hat{M}$ and $\lambda^s \in \hat{A}$ we form the finite-dimensional irreducible unitary representation $\sigma \times \lambda^s$ of P via $(\sigma \times \lambda^s)(man) = \sigma(m)\lambda^s(a)$ and write

$$\pi(\sigma, s) = \operatorname{Ind}_{P}^{G} \sigma \times \lambda^{s}.$$

The collection of unitary representations $\{\pi(\sigma, s): \sigma \in \hat{M}, s \in \mathbf{R}\}$ is called the principal series of G. It is known that $\pi(\sigma, s)$ is irreducible unless $w \cdot \sigma = \sigma$ and s = 0 and in this case $\pi(\sigma, 0)$ may or may not be irreducible (see [5] or [8, Volume I, p. 462]). When G has a unique Cartan subgroup, the results of Wallach [7] show that every member of the principal series is irreducible. If we let $R = \{\sigma \in \hat{M}: \pi(\sigma, 0) \text{ is reducible}\}$ and $I = \hat{M} - R$, then for $\sigma \in R$ it is known that $\pi(\sigma, 0)$ decomposes into two inequivalent representations of G (see [4]) which we shall denote by π_{σ}^{\pm} . It follows from [8, 5.5.3.3] that $\pi(\sigma, s) \simeq \pi(\sigma', t)$ iff there exists a $c \in W$ such that $c \cdot \sigma = \sigma'$ and $c \cdot s = t$, i.e., $\sigma = \sigma'$ and s = t or $w \cdot \sigma = \sigma'$ and s = -t. Thus we may identify the collection of principal series representations with \mathcal{Q}_{p} .

As in [8, Volume II], we let \hat{G}_P denote the subset of \mathcal{Q}_P consisting of irreducible principal series representations. A point $q \in \mathcal{Q}_P - \hat{G}_P$ has coordinates $(\sigma, 0)$ with $\sigma \in R$ and so we may associate to q the *pair* of representations $\pi_{\sigma}^{\pm} = \pi_q^{\pm}$ in \hat{G}_r (it is this association that makes \hat{G}_r non-Hausdorff). Letting $\check{G}_P = \{\pi_q^{\pm} : q \in \mathcal{Q}_P - \hat{G}_P\}$ we have that $\hat{G}_P \cap \check{G}_P = \emptyset$.

When G has a compact Cartan subgroup (iff rank $G \equiv 1 + \text{rank } M = \text{rank } K$), one obtains a family of irreducible, square-integrable, unitary representations of G called the discrete series of G. Denoting this family by \hat{G}_d , we have that $\hat{G}_d \cap (\hat{G}_P \cup \check{G}_P) = \emptyset$ and that it is possible to parameterize \hat{G}_d by a lattice in \mathbb{R}^{n+1} [8, 10.2.4]. Thus we may identify \hat{G}_d with a countable discrete subset of \mathbb{R}^{n+1} which does not intersect $\hat{G}_P \cup \check{G}_P$ and ultimately, \hat{G}_r as a disjoint union of the three subsets \hat{G}_P , \check{G}_P , and \hat{G}_d of \mathbb{R}^{n+1} .

THEOREM (LIPSMAN). Let \hat{G}_r be the reduced dual of G. Then

(1) if G has a unique Cartan subgroup, $\hat{G}_r = \hat{G}_P = \mathcal{Q}_P$ and the hull-kernel topology on \hat{G}_r coincides with the natural (Hausdorff) topology of \mathcal{Q}_P ,

(2) if G also has a compact Cartan subgroup, $\hat{G}_r = \hat{G}_P \cup \check{G}_P \cup \hat{G}_d$ (disjoint union) where both \hat{G}_d and $\hat{G}_P \cup \check{G}_P$ are open in \hat{G}_r , the topology on $\check{G}_P \cup \hat{G}_d$ is discrete, and the closure of any subset $S \subseteq \hat{G}_P$ consists precisely of those $\pi \in \hat{G}_P \cup \check{G}_P$ which are associated with the points in the natural closure of S in \mathcal{Q}_P .

3. The structure of $C_{\rho}^{*}(G)$. Since $R = \{\sigma \in \hat{M} : w \cdot \sigma = \sigma\}$ and $I = \hat{M} - R$, we have $\hat{M} \times \hat{A} = (R \times \hat{A}) \cup (I \times \hat{A})$ where both $R \times \hat{A}, I \times \hat{A}$ are *W*-invariant and, in fact, $(R \times \hat{A})/W = R \times [0, \infty)$. Let $B = [0, \infty)$ and for $\sigma \in R$ write $B_{\sigma} = \{(\sigma, s) : s > 0\}, \overline{B_{\sigma}} = \{(\sigma, s) : s \ge 0\}$, and $B_{\sigma}' = B_{\sigma} \cup \{\pi_{\sigma}^{\pm}\}$. Let

$$\mathfrak{Q}_R = R \times B = \bigcup_{\sigma \in R} \overline{B_{\sigma}}, \quad \mathfrak{Q}_I = (I \times \hat{A}) / W \text{ and } B_{\theta} = \mathfrak{Q}_I \cup \hat{G}_d.$$

Then

$$\mathfrak{Q}_P = \mathfrak{Q}_R \cup \mathfrak{Q}_I$$
 and $\mathfrak{Q}_P \cup \hat{G}_d = \left(\bigcup_{\sigma \in R} \overline{B}_{\sigma}\right) \cup B_{\theta}$.

According to the results of §2, each of the (Hausdorff) fibres \overline{B}_{σ} in \mathcal{Q}_{R} is associated with the (non-Hausdorff) fibre B'_{σ} in \hat{G}_{r} where the topology on B'_{σ} is such that as $s \to 0$ in the usual sense, (σ, s) approaches both π^{\pm}_{σ} as limit points in \hat{G}_{r} . Thus we may write $\hat{G}_{r} = (\bigcup_{q \in R} B'_{\sigma}) \cup B_{\theta}$.

Let I_{θ} denote the ideal in $C_{\rho}^{*}(G)$ with $\hat{I}_{\theta} = B_{\theta}$ and I_{σ} denote the ideal in $C_{\rho}^{*}(G)$ with $\hat{I}_{\sigma} = B'_{\sigma}, \sigma \in R$. Let \mathfrak{A} be as in [8, Volume II, p. 50]. Then \mathfrak{A} is also a dense selfadjoint subalgebra of $C_{\rho}^{*}(G)$ with each element boundedly represented in \hat{G}_{r} . Since each B_{θ} and $B'_{\sigma}, \sigma \in R$, is both open and closed in \hat{G}_{r} , each $I_{\sigma}, \sigma \in R \cup \{\theta\}$, is a direct summand of $C_{\rho}^{*}(G)$. So for $\sigma \in R \cup$

 $\{\theta\}$ we may let \mathfrak{A}_{σ} denote the canonical image of \mathfrak{A} in I_{σ} . Then \mathfrak{A}_{σ} is a dense selfadjoint subalgebra of I_{σ} having the property that each of its elements is boundedly represented in \hat{I}_{σ} . We now use the extension theory of Delaroche to give concrete descriptions of these ideals and then prove that $C_{\rho}^{*}(G)$ is isomorphic to the restricted product [2, 1.9.14] of these ideals.

PROPOSITION 1. (i) Let $\sigma \in R$. Then I_{σ} is isomorphic to the C*-algebra of pairs

$$(m, (c_1, c_2)) \in C^b(B_{\sigma}, \mathfrak{K}(H)) \times (\mathfrak{K}(H) \oplus \mathfrak{K}(H))$$

such that $\lim_{t\to\infty} m(\sigma, t) = 0$ and $\lim_{t\to0} m(\sigma, t) = (c_1, c_2)$.

(ii) I_{θ} is isomorphic to $C^{0}(B_{\theta}, \mathcal{K}(H))$.

PROOFS. (i) For $\sigma \in R$, let J_{σ} be the ideal of I_{σ} with $\hat{J}_{\sigma} = B_{\sigma}$. From [8, Volume II, p. 50] it follows that J_{σ} is a C*-algebra with continuous trace [2, 4.5.2]. Since $H^{3}(B_{\sigma}, \mathbb{Z}) = 0$, it follows from [2, 10.9.6] that J_{σ} is isomorphic to $C^{0}(B_{\sigma}, \mathcal{K}(H))$. Now I_{σ} is isomorphic to an extension of $C^{0}(B_{\sigma}, \mathcal{K}(H))$ by $\mathcal{K}(H) \oplus \mathcal{K}(H)$, in fact, using [1, Theorem VI.3.8], one can concretely describe I_{σ} as above once the positive integers *m* and *n* are determined in the equation

$$\lim_{\sigma \to \infty} \operatorname{tr} \pi(\sigma, t)(f) = m \operatorname{tr} \pi_{\sigma}^{+}(f) + n \operatorname{tr} \pi_{\sigma}^{-}(f), \quad f \in \mathfrak{A}_{\sigma}.$$

However, the results of [8, Volume II, p. 50] show that m = n = 1 and so (i) follows.

(ii) Since \hat{I}_{θ} is Hausdorff and $H^{3}(I_{\theta}, \mathbb{Z}) = 0$, (ii) follows from [2, 10.9.6] since [8, Volume II, pp. 50, 422] shows that I_{θ} is a C*-algebra with continuous trace.

PROPOSITION 2. Let $\sigma \in R$. Then I_{σ} is isomorphic to the subalgebra D of functions in $C^{0}(\overline{B}_{\sigma}, \mathcal{K}(H))$ which reduce at $(\sigma, 0)$ by $H \oplus H$.

PROOF. For $f \in D$, the pair $(m, (c_1, c_2))$ where $m(\sigma, t) = f(\sigma, t)$ for $t \in (0, \infty)$ and $(c_1, c_2) = f(\sigma, 0)$ is clearly in I_{σ} . Since the mapping $f \mapsto (m, (c_1, c_2))$ is an isomorphicm of D onto I_{σ} , the proposition follows.

LEMMA 1. Let α be a C*-algebra without identity. If $\hat{\alpha} = \bigcup_{n=1}^{\infty} X_n$ where the X_n are disjoint nonempty open subsets of $\hat{\alpha}$, then α is isomorphic to the restricted product B of the ideals I_n , where $\hat{I}_n = X_n$.

PROOF. Let $C = \bigcup_{k=1}^{\infty} \bigoplus_{n=1}^{k} I_n$ and consider the ideal $J = \overline{C}$ of α . It is easy to see that for any $\pi \in \hat{\alpha}$, $\pi(J) \neq 0$. Thus $J = \alpha$ by [2, 3.2.2]. We now map C onto a dense subset of B in the obvious way. Since this mapping is an isometry, it extends to an isomorphism of α onto B.

THEOREM 1. $C^*_{\rho}(G)$ is isomorphic to the restricted product of the C*-algebras $I_{\sigma}, \sigma \in R \cup \{\theta\}$.

PROOF. Since $\widehat{C_{\rho}^{*}(G)} = \widehat{G}_{r} = (\bigcup_{\sigma \in R} B'_{\sigma}) \cup B_{\theta}$, this is immediate from Lemma 1.

THEOREM 2. $C_{\rho}^{*}(G)$ is isomorphic to the subalgebra of $C^{0}(\mathcal{Q}_{P} \cup \hat{G}_{d}, \mathcal{K}(H))$ of functions which reduce at the points of $\mathcal{Q}_{P} - \hat{G}_{P}$ by $H \oplus H$. In particular, when $\check{G}_{P} = \emptyset$, $C_{\rho}^{*}(G)$ is isomorphic to $C^{0}(\hat{G}_{r}, \mathcal{K}(H))$.

PROOF. By Theorem 1 we have that $C^*_{\rho}(G)$ is isomorphic to the restricted product P of the ideals I_{σ} , $\sigma \in R \cup \{\theta\}$ whose structures are given by Propositions 1(ii) and 2. For $f = \{f_{\sigma}\}$ in P we define the function F on $\mathcal{Q}_P \cup \hat{G}_d = (\bigcup_{\sigma \in R} \overline{B}_{\sigma}) \cup B_{\theta}$ by $F(v) = f_{\sigma}(v)$ if $v \in \overline{B}_{\sigma}$, $\sigma \in R$, and $F(v) = f_{\theta}(v)$ if $v \in B_{\theta}$. Then F is easily seen to be a norm-continuous bounded function on the Hausdorff space $\mathcal{Q}_P \cup \hat{G}_d$ for which ||F(t)|| vanishes at infinity and $F(\sigma, 0) = f_{\sigma}(0, 0) = (c_1(\sigma), c_2(\sigma))$ for $\sigma \in R$. Theorem 2 now follows since the mapping $f \mapsto F$ is an isomorphism of P onto the above subalgebra.

4. Some examples. A. If G = Spin(2n + 1, 1) for $n \ge 1$, then $\check{G}_P = \emptyset$ (see [5] or [7]). Since $\hat{G}_d = \emptyset$, we have $\hat{G}_r = \hat{G}_P$ is Hausdorff and

$$C^*_{\rho}(G) \approx C^0(\hat{G}_r, \mathcal{K}(H)).$$

B. For $G = SL(2, \mathbb{R})$, $M = \{\pm e\}$ and we may take $\hat{M} = \{0, 1\}$ with $R = \{1\}$ and $I = \{0\}$. Thus we may identify \hat{G}_r , with the following subset of \mathbb{R}^2 : \hat{G}_p consists of the two fibres $\{(0, s): s \ge 0\}$ and $\{(1, s): s > 0\}$; \check{G}_p is a pair of points at $(1, -\frac{1}{2})$; and \hat{G}_d consists of the infinite collection of pairs of points at (-1, -n), $n = 1, \frac{3}{2}, 2, \ldots$. The hull-kernel topology on \hat{G}_r is then the relative topology \hat{G}_r obtains as a subset of \mathbb{R}^2 with the one exception that as $(1, s) \rightarrow (1, 0)$ in the usual sense, (1, s) approaches the pair of points at $(1, -\frac{1}{2})$ as limit points. To describe $C_p^*(G)$ we let $X = \{(0, s): s \ge 0\} \cup \{(1, s): s \ge 0\} \cup \{(1, s): s \ge 0\} \cup \hat{G}_d$ with the relative topology of \mathbb{R}^2 . $C_p^*(G)$ is then isomorphic to the subalgebra of $C^0(X, \mathcal{K}(H))$ consisting of functions which reduce at (1, 0) by $H \oplus H$.

C. For G = Spin(4, 1), $M = \text{Spin}(3) \approx \text{SU}(2)$ and we may parameterize \hat{M} by nonnegative half-integers with $R = \{\frac{1}{2}, \frac{3}{2}, \dots\}$, $I = \{0, 1, 2, \dots\}$. Using the results of Dixmier [3], we may parameterize \hat{G}_d by pairs of points at (n, -q) where $n = 1, \frac{3}{2}, 2, \dots$ and $q = n, n - 1, \dots, \frac{3}{2}$ or 1. Thus \hat{G}_r can be identified with the following subset of \mathbb{R}^2 : \hat{G}_P is the collection of fibres $\{(n, s): s \ge 0 \text{ if } n \in I \text{ and } s > 0 \text{ if } n \in R\}$; \check{G}_P is the infinite collection of pairs of points at $(n, -\frac{1}{2}), n \in R$; and \hat{G}_d consists of the infinite collection of pairs of points at $(n, -q), n = 1, \frac{3}{2}, \dots$ and $q = n, n - 1, \dots, \frac{3}{2}$ or 1. Since $\check{G}_P \ne \emptyset, \hat{G}_r$ is not Hausdorff. To describe $C_p^*(G)$ we let $X = \bigcup_{n \in R \cup I} \{(n, s): s \ge 0\} \cup \hat{G}_d$ with the relative topology of \mathbb{R}^2 . Then $C_p^*(G)$ is isomorphic to the subalgebra of $C^0(X, \mathcal{K}(H))$ consisting of functions which reduce at the points $(n, 0), n \in R$, by $H \oplus H$.

D. Let $G = SO_e(n, 1)$, $n \ge 2$, and G' be the two-fold covering of G-so $G' = SL(2, \mathbf{R})$ for n = 2 and G' = Spin(n, 1) for $n \ge 3$. G' then satisfies the hypotheses of this paper. From [5] we know that even though G' may have reducible principal series (iff n is even), G does not. Since $\hat{G}_r \subseteq \hat{G}'_r$ has the relative hull-kernel topology, we see that \hat{G}_r is Hausdorff [for example, if

n = 2 and D denotes the subset of \hat{G}_d (in B) consisting of pairs of points at (-1, -n), n = 1, 2, ..., then $\hat{G}_r = \{(0, s): s \ge 0\} \cup D$, while if n = 4 and D denotes the subset of \hat{G}_d (in C) of pairs of points at $(n, -q), n \in I$, then $\hat{G}_r = \bigcup_{n \in I} \{(n, s): s \ge 0\} \cup D$]. Thus it follows, as in the proof of Proposition 1(ii), that $C_{\rho}^*(G) \approx C^0(\hat{G}_r, \mathcal{K}(H))$.

5. A remark on $C_0(\hat{G})$. When G is a locally compact abelian group, it is common to denote the collection of continuous functions on the dual group \hat{G} which vanish at infinity by $C_0(\hat{G})$. In a recent paper [6], R. Lipsman defined an analogue of this space for separable locally compact unimodular type I groups as follows: letting dg denote Haar measure on G,

$$\mathfrak{F}f(\pi) = \hat{f}(\pi) = \int f(g)\pi(g) \, dg$$

be the Fourier-transform of $f \in L_1(G)$, $|||\hat{f}(\pi)|||$ the operator norm of $\hat{f}(\pi)$, $||\hat{f}||_{\infty} = \text{ess sup}_{\pi \in \hat{G}}|||\hat{f}(\pi)|||$ (with respect to Plancherel measure on \hat{G}), and $A(\hat{G}) = \mathfrak{F}(L_1(G))$, then $C_0(\hat{G})$ is defined to be the closure of the algebra $A(\hat{G})$ with respect to the norm $|| \cdot ||_{\infty}$. The question is then raised as to determining an intrinsic characterization of $C_0(\hat{G})$. Since $C_0(\hat{G})$ is easily seen to be isomorphic to $C_{\rho}^*(G)$ (see [6]), the results of this paper seem to indicate that this will be a difficult problem and that the hull-kernel topology on the spectrum of $C_{\rho}^*(G)$, \hat{G}_r , will play a key role in determining an intrinsic characterization of $C_0(\hat{G})$. In fact, Theorem 2 shows that when G is as in the introduction of this paper, an intrinsic characterization of $C_0(\hat{G})$ must take the non-Hausdorff nature of \hat{G}_r into consideration.

We also remark that for amenable groups, $C_0(\hat{G}) \approx C_{\rho}^*(G) \approx C^*(G)$ (the group C^* -algebra of G), and although it is quite easy to describe $C_0(\hat{G})$ for abelian or compact groups, we know of no other separable unimodular type I amenable group for which the structure of $C^*(G)$ has been determined.

References

1. C. Delaroche, Extensions des C*-algèbres, Bull. Soc. Math. France, Mémoire 29, 1972.

J. Dixmier, Les C*-algèbres et leurs représentations, 2nd ed., Gauthier-Villars, Paris, 1969.
______, Représentations intégrables du groupe de De Sitter, Bull. Soc. Math. France 89 (1961), 9-41. MR 25 #4031.

4. A. W. Knapp, Commutativity of intertwining operators, Bull. Amer. Math. Soc. 79 (1973), 1016-1018. MR 48 #11399.

5. A. W. Knapp and E. M. Stein, Intertwining operators for semisimple groups, Ann. of Math. (2) 93 (1971), 489-578.

6. R. L. Lipsman, Non-abelian Fourier analysis, Bull. Sci. Math. 98 (1974), 209-233.

7. N. R. Wallach, Cyclic vectors and irreducibility for principal series representations, Trans. Amer. Math. Soc. 158 (1971), 107-113. MR 43 #7558.

8. G. Warner, Harmonic analysis on semisimple Lie groups. Vols. I, II, Springer-Verlag, Berlin, 1972.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PENNSYLVANIA 19174 (Current address of Robert Boyer)

Current address (Robert Martin): Department of Mathematics, Middlebury College, Middlebury, Vermont 05753