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THE REGULAR GROUP C*-ALGEBRA FOR
REAL-RANK ONE GROUPS

ROBERT BOYER AND ROBERT MARTIN!

ABSTRACT. Let G be a connected semisimple real-rank one Lie group with
finite center and let C3(G) denote the regular group C*-algebra of G. In this
paper a complete description of the structure of C;(G) is obtained.

1. Introduction. Let G be a connected semisimple real-rank one Lie group
with finite center and Lie algebra g. If G is the simply connected, complex
analytic group corresponding to g, we assume, in addition, that G is the real
analytic subgroup of G corresponding to g. Let C3(G) denote the regular
group C*-algebra of G, i.e., the completion of L,(G) with respect to the norm
I1£1l, = lllo(N)Ill where p is the left regular representation of G and |||o(f)|||
denotes the norm of p(f) as a left convolution operator on L,(G). The
purpose of this paper is to give a complete description of the structure of
C3(G) and thus give a partial answer (one for the above G) to a question
raxsed in [6] as to an intrinsic characterization of CO(G ).

Throughout this paper H will denote a fixed separable infinite-dimensional
Hilbert space and K (H) will denote the compact operators on H. We
assume, in addition, that H has been identified with H © H. When T is a
locally compact Hausdorff space, we denote by C®(T, K (H)) the C*-algebra
of all norm-continuous bounded functions 7+ x(¢) of T into K (H) and by
C%T, K (H)) the C*-algebra of functions in C®(T, K (H)) such that ||x(7)|
vanishes at infinity.

The underlying hull-kernel topology on the spectrum of C}(G), G plays a
key role in descnbmg the structure of C*(G) ~ CO(G) The main d1fflculty
occurs when G, is not Hausdorff. When G, is Hausdorff e.g.,

G =Spin(2n + 1,1) forn > 1,

it follows from [2 10.9.6] that C;(G) is isomorphic to C °( , H(H)).
However, when G, is not Hausdorff the above theorem no longer apphes and
we show, in §3, that it is possible to use the extension theory of C. Delaroche
[1] to determine the structure of C}(G). We first show that C(G) is
isomorphic to the restricted product of certain C*-algebras whose structures
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hﬂave concrete descriptions given by [1, Theorem VI.3.8]. Letting 2, GP, and
G, be as in [8, Volume II], it is then a simple matter to give an alternate
description of C}(G) as the subalgebra of functions in C%2, U G,, K(H))
which reduce at the p01lnts of 2, G (i.e., the points “responsible” for the
non-Hausdorffness of G,) by H © H.

We refer to [2] and [8] for all undefined terms and notation.

2. The topology on G In this section we summarize the main results
concerning the representation theory of G and the topology on G which we
shall need to describe C3(G). For a more detailed account we refer to [8,
Volume II, Chapter 7 and Epilogue].

Let G = KAN be an Iwasawa decomposition for G, M the centralizer of 4
in K, P = MAN (a minimal parabolic subgroup of G), and W = {1, w} be
the Weyl group of G, where w is the unique nontrivial elemem of W. We let

G, denote the reduced dual of G i.e., the support of p in G.

Up to conjugacy, either G has a unique noncompact Cartan subgroup or G
has two Cartan subgroups-one compact and one noncompact. Each con-
jugacy class of Cartan subgroups makes its own contribution to G The
noncompact Cartan subgroup contributes the collection of irreducible prin-
cipal series representations, G,,, together with those irreducibles which arise as
summands of reducible principal series representations, GP The compact
Cartan subgroup contributes the so-called discrete series of G, G Let us
briefly recall the parameterizations of these representations given in [8].

If a denotes the Lie algebra of 4, the irreducible unitary representatlons of
A are given by A°(exp H) = exp(st) SER, HEaq, and so 4 = (A%
s € R}. The hull-kernel topology on A agrees with the usual topology it
inherits as the character group of the abelian group 4, i.e., that of R. If n is
the dimension of a maximal torus in the compact group M, then we may view
M as a countable discrete subset of R” and, hence, M X A as a subset of
R"*! with the relative topology. The Weyl group W acts on M X A as
follows: 1- (g, s) = (o, s) and w- (g, s) = (w-0, —s) where w-o(m) =
o(w“ mw) m € M. Under the quotient topology, the orbit space 2, =
(M X A) /W is locally compact and Hausdorff.

For o € M and A* € A we form the finite-dimensional irreducible unitary
representation ¢ X A* of P via (6 X A*)(man) = a(m)\*(a) and write

7(0,s) = Ind§o X \°.

The collection of unitary representations {w(o, §): ¢ € M, s € R} is called
the principal series of G. It is known that =(o, s) is irreducible unless
w-o0 = ¢ and s = 0 and in this case 7(o, 0) may or may not be irreducible
(see [5] or [8, Volume I, p. 462]). When G has a unique Cartan subgroup, the
results of Wallach [7] show that every member of the prmcnpal series is
irreducible. If we let R = {o € M: 7(o, 0) is reducible} and I = M — R,
then for ¢ € R it is known that m(o, 0) decomposes into two 1nequ1valent
representations of G (see [4]) which we shall denote by 7.°. It follows from [8,
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5.5.3.3] that 7 (o, s) = =(0o’, t) iff there exists a ¢ € W such that ¢c- 0 = o’
andc-s =t i.e,o =0 ands=torw-o = ¢ and s = — t. Thus we may
identify the collection of principal series representations with 2.

As in [8, Volume II], we let GP denote the subset of 2, consisting of
irreducible principal series representations. A pointg € 2, — G has coordi-
nates (o, 0) with o ER and so we may associate to ¢ the pair of representa-
tions 7,° = 7 in G (it is this association that makes G non-Hausdorff).
Letting G, = {w- q € 2, — Gp} we have that G, N G, = @.

When G has a compact Cartan subgroup (iff rank G =1 + rank M =
rank K), one obtains a family of irreducible, square-integrable, unitary
representations of G called the discrete series of G. Denoting this family by
Gd, we have that Gd N (G,, U Gp) = @ and that it is possible to parameterize
Gd by a lattice in R"*! [8, 10.2.4]. Thus we may 1dent1fy Gd with a countable
discrete subset of R"*! which does not intersect Gp U Gp and ultimately, G
as a disjoint union of the three subsets GP, Gp, and Gd of R"*1,

THEOREM (LIPSMAN). Let G, be the reduced dual of G. Then

(1) if G has a unique Cartan subgroup, é, = GP = Qp and the hull-kernel
topology on G, coincides with the natural (Hausdorff ) topology of QP,

(2) if G also has a compact Cartan subgroup, G G,, u G,, U Gd (dzsjomt
union) where both Gd and Gy U G, are open in G, the topology on GpU Gy is
discrete, and the closure of any subset S C G consists precisely of those
m € Gp U Gp which are associated with the points in the natural closure of Sin

2,

3. The structure of C3(G). Since R = {0 € M:w-o= o}and ] = M — R,
wehave M X 4 = (R X A) U (I X A)where both R X A, I X A are W-in-
variant and, in fact, (R X A)/W R X [0, o). Let B =[0, o) and for
o € R write B, = {(0,5): s > 0}, B, = {(0,5): s > 0},and B, = B, U {n2).
Let

9%« =RxB=\UB, 2 =(xA)/W and B,= 2, U G,

0ER

Then

9, =9, U9 and QPqu=(U E,,)UB,,.

0ER
According to the results of §2, each of the (Hausdorff) fibres E,, in 24 is
associated with the (non-Hausdorff) fibre B, in G where the topology on B,
is such that as s — 0 in the usual sense, (o, s) approaches both «;° as limit

points in G Thus we may write G = (UgerB,) U By
Let I, denote the ideal in C}(G) with 19 = By and I, denote the ideal in
Cx(G) with 1 = B),0 € R. Let A be as in [8, Volume II, p. 50]. Then A is
also a dense Sle&d_]Oll’lt subalgebra of C}(G) with each element boundedly
represented n G Since each B, and B,, o € R, is both open and closed in
G., each I,, 0 € R U {0}, is a direct summand of C*(G). So for 6 € R U
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{0} we may let U, denote the canonical image of QU in I,. Then A, is a
dense selfadjoint subalgebra of I, having the property that each of its
elements is boundedly represented in 1:,. We now use the extension theory of
Delaroche to give concrete descriptions of these ideals and then prove that
C;(G) is isomorphic to the restricted product 2, 1.9.14] of these ideals.

PROPOSITION 1. (i) Let 6 € R. Then 1 is isomorphic to the C*-algebra of
pairs
(m, (c1, ¢3)) € C* (B, H(H)) X (K(H) ® K(H))

such that lim, |  m(o, t) = 0 and lim,_ym(o, 1) = (c,, c,).
(i) 1, is isomorphic to C%(B,, K (H)).

ProoFs. (i) For o € R, let J, be the ideal of I, with J; = B,. From [8,
Volume II, p. 50] it follows that J_ is a C*-algebra with continuous trace [2,
4.5.2). Since H*(B,, Z) = 0, it follows from [2, 10.9.6] that J, is isomorphic to
C%B,, K (H)). Now I, is isomorphic to an extension of C%(B,, h (H)) by
R(H)® H(H), in fact, using [I, Theorem VI.3.8], one can concretely
describe I, as above once the positive integers m and n are determined in the
equation

’lin(l)trw(o,t)(f)=mtrvra+(f)+ntr7ra'(f), fE,.

However, the results of [8, Volume II, p. 50] show that m = n = 1 and so (i)
follows.

(i1) Since I; is Hausdorff and H3(1,, Z) = 0, (ii) follows from [2, 10.9.6]
since [8, Volume II, pp. 50, 422] shows that /, is a C*-algebra with continuous
trace.

PROPOSITION 2. Let 0 € R. Then I, is isomorphic to the subalgebra D of
functions in CO(EU, K (H)) which reduce at (o, 0) by H ® H.

Proor. For f € D, the pair (m, (c,, ¢c,)) where m(o, 1) = f(0, 1) for t € (0,
00) and (cy, ¢,) = f(o, 0) is clearly in /_. Since the mapping f+> (m, (c,, ¢,)) is
an isomorphicm of D onto I, the proposition follows.

LEMMA 1. Let a be a C*-algebra without identity. If & = U {°X,, where the X,
are disjoint nonempty open subsets of Q, then a is isomorphic to the restricted
product B of the ideals I, where I, = X,,.

PrOOF. Let C = Up., @*_ I, and consider the ideal J = C of a. It is
easy to see that for any 7= € 4, #(J) = 0. Thus J = a by [2, 3.2.2]. We now
map C onto a dense subset of B in the obvious way. Since this mapping is an

1sometry, it extends to an isomorphism of a onto B.

THEOREM 1. C}(G) is isomorphic to the restricted product of the C*-algebras
I,0€ R U {08}

PROOF. Since C/;(B = G, = (U,cgB.) U B,, this is immediate from
Lemma 1.
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THEOREM 2. C*(G) is isomorphic to the subalgebra of C°(2, U G,, K (H))
of functions which reduce at the points of E’ZAP — Gp by H ® H. In particular,
when Gp = @, C*(G) is isomorphic to C%(G,, K (H)).

Proor. By Theorem 1 we have that C}(G) is isomorphic to the restricted
product P of the ideals I,, ¢ € R U {#} whose structures are given by
Proposmons 1(it) and 2. For f= {f} in P we defme the function F on
2 UGd (U,ecrB,) U By by F(v) = f,(v)if v € B,, 6 € R, and F(v) =
fo(v) if v € By. Then F is easily seen to be a norm-continuous bounded
function on the Hausdorff space 2, U G, for which ||F(¢)|| vanishes at
infinity and F(o, 0) = f,(0, 0) = (c,(0), cx(0)) for ¢ € R. Theorem 2 now
follows since the mapping f+> F is an isomorphism of P onto the above
subalgebra.

4. Some examples. A. If G = Spin(2n + 1, 1) for n > 1, then GP = O (see
[5] or [7]). Since G, = @, we have G, = G, is Hausdorff and

C(G)~ C°(G,, H(H)).

B For G=SL(2, R), M = {*e} and we may take M = {0, 1} with
= {1} and I = {0}. Thus we may identify G with the following subset of
R2 G,, consists of the two fibres {(0, 5): s > 0} and {(1, 5): s > 0}; Gpisa
pair of points at (I, — 1); and Gd consists of the infinite collection of pairs of
points at (=1, —n), n =1, 2, 2,.... The hull-kernel topology on G is then
the relative topology G obtains as a subset of R? with the one exception that
as ( 1, 5) > (1, 0) in the usual sense, (1, s) approaches the pair of points at (I,
3) as limit points. To describe Cy(G) we let X = {(0, 5): s > 0} U {(1, s):
s >0} u Gd with the relative topology of R?. C7(G) is then isomorphic to the
subalgebra of Co(X, H(H)) consisting of functions which reduce at (1, 0) by
H & H.

C. For G = Spin(4, 1), M = Spin(3) ~ SU(2) and we may parameterize M
by nonnegative half-integers with R = {1, 3, .. -3 1={0,1,2,...}. Using
the results of Dixmier [3], we may parameterize Gd by pairs of pomts at (n,
—q)wheren=1,3,2,... andg=nn-1,..., 3 or 1. Thus G, can be
identified with the following subset of R2: G,, is the collection of fibres {(n,
s):s >20ifnelands >0ifn E R} Gp is the infinite collection of pairs of
points at (n, — 1), n € R; and Gd consists of the infinite collection of pairs of
points at (n, —q), n=1 3.... and g=n, n—1,..., 3 or 1. Since

p 7+ O, G is not Hausdorff. To describe C(G)welet X = U,cry,{(n,9):
s > 0} u Gd with the relative topology of R2 Then C}(G) is isomorphic to
the subalgebra of Co%X, K (H)) consisting of functions which reduce at the
points (n, 0), n € R, by H ® H.

D. Let G =8SO,(n, 1), n > 2, and G’ be the two-fold covering of G-so
G’ =SL(2, R) for n = 2 and G’ = Spin(n, 1) for n > 3. G’ then satisfies the
hypotheses of this paper. From [5] we know that even though G’ may have
reducible principal series (iff n is even), G does not. Since G C G has the
relative hull-kernel topology, we see that G is Hausdorff [for example, if
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n = 2 and D denotes the subset of de (in B) consisting of pairs of points at
(=1, —n),n=1,2,...,then G,= {(0, s5): s > 0} U D, while if n = 4 and
D denotes the subset of éd (in C) of pairs of points at (n, —gq), n € I, then
C:‘, = U,e;{(n s):s > 0} u D]. Thus it follows, as in the proof of Proposi-
tion 1(ii), that CX(G) ~ C%G,, K (H)).

5. A remark on Co(é). When G is a locally compact abelian group, it is
common to denote the collection of continuous functions on the dual group G
which vanish at infinity by Co(é). In a recent paper [6], R. Lipsman defined
an analogue of this space for separable locally compact unimodular type I
groups as follows: letting dg denote Haar measure on G,

Ff(m) = (m) = [ f(&)m(2) dg

be the Fourier-transform of f € L,(G), |||f(m)||| the operator norm of f(m),
I f llo = ess sup, ¢ &1 f (@] (with respect to Plancherel measure on G), and
A(G) = % (L,(G)), then CO(G) is defined to be the closure of the algebra
A(G) with respect to the norm | - ||,. The question is then raised as to
determining an intrinsic characterization of Cy( G) Since CO(G) is easily seen
to be isomorphic to C¥(G) (see [6]), the results of this paper seem to indicate
that this will be a difficult problem and that the hull-kernel topology on the
spectrum of C}(G), G will play a key role in determining an intrinsic
characterization of CO(G) In fact, Theorem 2 shows that when G is as in the
introduction of this paper, an intrinsic characterization of CO(G) must take
the non-Hausdorff nature of G, into consideration.

We also remark that for amenable groups, CO(C) ~ CyG)= C*(G) (the
group C*-algebra of G), and although it is quite easy to describe Cy(G) for
abelian or compact groups, we know of no other separable unimodular type I
amenable group for which the structure of C*(G) has been determined.
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