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Abstract. It is shown that if F is a field of characteristic zero and G is a

group such that the group ring F[G] is semilocal then G must be finite. A

generalization to group rings over rings is given.

A ring R is semilocal if R/J(R) is artinian, where I(R) denotes the Jacobson

radical of R. R is said to be local if R/I(R) is a division ring. It is well known

that the group ring is never local for a field of characteristic zero unless the

group is trivial. As it is conjectured that J(F[G]) = (0) whenever Fis a field

of characteristic zero, we expect F[G] semilocal to imply G finite, and this is

easily proved if F is not algebraic over the rationals, by a theorem of Amitsur

[1]. The result in this paper may be interpreted as saying that the radical of the

rational group ring cannot be "too large".
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Lemma 1. Let K be a central subfield of a division ring D and let T G Mn(D),

the full n by n matrix ring over D. Then the set S (T) = {k G K: 1 — k~ T is

singular] has at most n elements.

Proof. When written on the right, the elements of Mn(D) may be regarded

as left Z)-linear transformations from the vector space D" to D". If 1 — k~] T

is singular, there is a nonzero vector v G D" such that v(\ - k~ T) = 0,

or vT = kv since k commutes with v. Hence k is an eigenvalue of T. Standard

arguments of linear algebra show that eigenvectors in D" corresponding to

distinct eigenvalues of T in the centre of D are Z)-linearly independent.

Corollary. Let R be a completely reducible K-algebra and let x G R. Then

the set S(x) = {k G K: 1 — k~ x is not a unit in R] is finite.

The following clever lemma forms a major part of the proof of the theorem

in [3],

Lemma 2 (Formanek). Let K be a subfield of the reals and let x = 2"»i a¡S¡
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G K[G] be such that each a¡ > 0 and 2"= \ a¡ <C 1. // 1 — x is a unit in K[G]

then the group generated by {g¡,g2,... ,g„) is finite.

Proof. It is sufficient to show that the semigroup H generated by

{g\,g2, ■■■ >gn) is finite, since a finite semigroup with cancellation is a group.

This is done by showing that H is contained in the support of (1 - xf .

The norm | | defined on K[G] by |2 k¡g¡\ = 2 \k¡\ satisfies \y\ > 0 for all

y # 0 and \yz\ < |>>| \z\ for ally, z G K[G].

Let (1 - x)~X = y and for m > 0 let ym = 1 + x + ■ ■ ■ + xm. Then y - ym

- A\ - *){y-ym) = y[\ - 0 - *m+1)] = ^m+l and

Hence limM_>J.y-.)J = 0.

Let h & H. Then A = g, g, • • • g, for some r > 0. Since all the coefficients

in .x are positive, there can be no cancellation of terms in the powers of x;

hence h G Supp (xr). Moreover for all m > r, h G Supp (ym) and the coeffi-

cient of h in ym is at least a¡ a¡ ■ ■ ■ at■ . If h G Supp (_y) this implies that

I y - ym I > «/, a/2 • ' ' %> contradicting limm^001y - ym | =0.

Theorem. Let F be a field of characteristic zero and let G be a group. If the

group ring F[G] is semilocal then G is finite.

Proof. We first prove that G is locally finite. Let {g, ,g2,... ,g„) be a finite

subset of G and let x = gl + g2 + • • • + g„. As F[G] is semilocal, F[G]

= /^Gj/l/l/-"^]) is completely reducible. Hence by the Corollary to Lemma

1 there exists an integer m > n such that 1 — m~ a: is a unit in F[G]. Thus

1 - m~xx is a unit in F[G]. By considering a Q-basis for F (where Q denotes

the rationals) we see that 1 - m~'x is a unit in Q[G]. By Lemma 2, the

subgroup generated by {g[,g2,... ,g„} is finite. This proves that G is locally

finite.

By the Maschke theorem, K[H] is completely reducible for every finitely

generated subgroup H of G. In particular, J(K[H\) = (0). Hence J(K[G])

= (0) and K[G] is completely reducible. It follows, again from the Maschke

theorem, that G is finite. (For more details, see [2].)

Corollary. Let A be a ring such that A/J(A) has characteristic zero and let

G be a group. Then the group ring A[G] is semilocal if and only if A is semilocal

and G is finite.

Proof. Suppose A is semilocal and G is finite. By [2, Proposition 9],

J(A)A[G] C J(A[G]). It follows that A[G]/J(A[G]) is a homomorphic image

of A[G]/(J(A)A[G]) s Ä[G], an artinian ring (where A = A/J(A)). Hence

A[G] is semilocal.

Conversely suppose A[G] is semilocal. Since A is a homomorphic image of

A[G], A is semilocal. Hence A s. ®"=]Mn{D¡). Since A has characteristic

zero, so has one of the division rings D¡. Since Mn(D¡) is a homomorphic image
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of A, Mn.(D;)[G] is a homomorphic image of A[G] and is semilocal. Now

M^D^G] st M (D¡) ®Q Q[G]. By [4, Lemma 2], Q[G] is semilocal. Hence G

is finite.
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