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ABSTRACT. Tachikawa showed that a left perfect ring R is an injective
cogenerator in the category of all right R-modules iff there holds: (right FPF)
every finitely generated faithful right module generates mod-R. In this paper,
we simplify Tachikawa’s long and difficult proof by first obtaining some new
structure theorems for a general semiperfect right FPF ring R; the most
important are: R is a direct sum of uniform right ideals, and every nonzero right
ideal of the basic ring Ry of R contains a nonzero ideal of R. Furthermore, if
the Jacobson radical rad R is nil, then R is right self-injective. Tachikawa’s
theorem is an immediate consequence. We also generalize a theorem of
Osofsky on perfect PF rings to FPF rings.

1. Introduction. A ring R is said to be right (F)PF provided that every
(finitely generated) faithful right module M generates the category mod-R of
all right R-modules. Theorems of Azumaya [66], Osofsky [66], and Utumi [67]
characterize a right PF ring by the equivalent conditions.

(PF) R is right self-injective and semiperfect with essential right socle. (The
socle is the largest semisimple submodule.)

(PFy) R is right self-injective with finite essential right socle.

(PF;) R is a finite direct sum, R = X!, @e,; R, where ¢! = ¢, € R and ¢, R
is a projective injective right ideal with simple socle,i = 1, ..., n.

(PE,) R is an injective cogenerator in mod-R.

(PFs) R is right self-injective and every simple right module embeds in R.

(Compare Kato [68] and Onodera [68].)

These rings generalize the Quasi-Frobenius (QF) rings of Nakayama (the
Artinian PF rings), and the twosided PF rings of Morita [58]. The latter rings
possess a duality between the reflexive right R-modules and the reflexive left
R-modules induced by Hompg (, R). A theorem of Tachikawa [69] establishes
that any left perfect (in the sense of Bass [60]) right FPF ring R is a¢tually right
PF; consequently right Artinian right or left FPF rings are QF. In this paper
we generalize Tachikawa’s theorem (in (2) of Theorem 1) and in doing so
obtain a simpler (and self-contained) proof. (Most undefined terms are
explained in §2. Also, see Faith [76a], especially Chapter 24.)

1. THEOREM. (1) If R is a semiperfect right FPF ring, then R is a direct sum of
uniform right prindecs (= principal indecomposable right ideals), and every
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nonzero right ideal of the basic ring Ry of R contains a nonzero ideal of Ry. (2)
Moreover, if rad R is a nil ideal, then R is right self-injective.

2. THEOREM (CONVERSE OF THEOREM 1). Any right self-injective semiperfect
ring R is right FPF if every nonzero right ideal of the basic ring Ry contains an
ideal of R,,.

Theorem 1 implies Tachikawa’s theorem (via PF) since any left perfect ring
has nil radical and essential right socle (Bass [60]). Incidentally this proves

3. COROLLARY. Any right (or left) perfect right FPF ring is right self-injective.
We also prove

4. THEOREM. A left FPF right PF ring with nil radical is left PF.

5. COROLLARY. A left perfect left and right FPF right is QF.

The corollary generalizes the theorem of Osofsky [66] for one-sided perfect
two-sided PF rings. The corresponding question for one-or even two-sided
perfect one-sided PF rings is open.

2. Background. Before going to the proofs of the stated theorem, we supply

the relevant background material for these.
2.1 DEFINITION AND PROPOSITION. Let mod-R denote the category of right

R-modules for a ring R. An object M of mod-R is a generator iff the equivalent
conditions hold:

G1. The set-valued functor Hom g (M, ) is faithful.

G2. Given an object X of mod-R, there is an index set I and an exact sequence
MO 5 X - 0, where M 1) is the coproduct of I copies of M.

G3. There is a finite integer n > 0, an object Y of mod-R, and an isomorphism
M'"~R@e®Y.

G4. The trace ideal traceg M = EchomR(M‘R)f(M) equals R.

2.2 DEFINITION AND PROPOSITION (MORITA). Let R-mod denote the left-right
symmetry of mod-R. Two rings A and B are similar provided that the equivalent

conditions hold:
S1. mod-4A ~ mod-B.

S2. There exists a finitely generated projective generator P of mod-A such that
B ~ End F,.

S3. A-mod =~ B-mod.

In the case S2, Hom 4 (P, ) induces an equivalence mod-A ~ mod-B and the left
adjoint ®g P is the inverse equivalence. (The equivalence of S1-83 is Morita’s
theorem [58]. Cf. Bass [68] or Faith [73, Theorem 4.29].)

A Morita invariant property of A is a property defined for the category of
rings which 4 and any ring similar to 4 possesses.

Semiperfect rings. Let R = @®_,¢; R be a direct sum decomposition of R
into principal indecomposable right ideals ¢ R, ..., e, R. By definition, then,
e; is an idempotent # 0, ¢; Re; is a local ring, and ¢; R is an indecomposable
right ideal, which we call a right prindec, for short, i = 1,...,n By a
theorem of Bass [60], a ring R has such a decomposition if (and only if) R is
semiperfect in the sense that R/rad R is semisimple, or, as we say, R is
semilocal, and idempotents of R lift modulo rad R.
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Basic modules and rings. Now assume the notation above. Renumber
idempotents if necessary so that e, R/e,J, ..., e,, R/e,,J constitute the isomor-
phism classes of simple right modules. Thus, every simple module ~ some
e;R/e;J, with i < m, and ¢;R/e;J =~ e, R/e,J iff i = k, for all i and k < m.
The right ideal B = ¢ R + --- + ¢, R is called the basic right module of R,
ey = e + -+ + e, is then called the basic idempotent, and ey Rey; ~ End By
is the basic ring of R. The basic module is unique up to isomorphism, and if
fo is any other basic idempotent, there is a unit x of R such that fy = xeyx~'.
Furthermore, B is the unique (up to isomorphism) minimal (finitely generated
projective) generator of mod-R, and, in fact, if G is any other generator, there
is a module X of mod-R, and an isomorphism G =~ B & X. (This follows from
the Krull-Schmidt theorem. See, e.g., Bass [68, p. 19, (3.5)].) Thus, if M
=M®&- ---®&M,=A4X, for modules M;, 4, and X, i = 1, ..., n, where
End A4 is a local ring, then, for some j, A is a direct summand of M;. Thus, if
each M; is indecomposable, then M; = 4.

By the Morita theorem, every semiperfect ring R is similar to its basic ring.
The ring R is said to be self-basic iff R = B. (This condition is right-left
symmetric, inasmuch as R is self-basic iff R/rad R is a finite product of fields.)
The basic ring of a ring is self-basic. Categorical properties such as R is right
self-injective (= finitely generated projective right modules are injective) are
Morita invariant properties, and therefore hold for R iff they hold for the basic
ring of R.

The term uniform is used in Goldie’s sense, namely, a right module (or right
ideal) U is uniform iff I N K = 0 for two submodules I and K imply that
I = 0 or K = 0. Equivalently, the injective hull E = U of U is indecomposa-
ble. (In this case, B = End Ey is a local ring by a theorem of Utumi [56].)

3. Proofs of Theorems. We begin with:

6. PROOF OF THEOREM 1. Let B be the basic right module, and let
B=¢R®: - ®e,R be its decomposition into a direct sum of mutually
nonisomorphic right prindecs (see §2). Suppose, for example, that I N K = 0
for two submodules 7 and K of e, R. Then, M = ¢, R/I ® ¢ R/K ® (1 — ¢)R
is a faithful right module inasmuch as its annihilator ideal Q annihilates
(1 —¢)R and ¢ R, that is, Q annihilates B, which is faithful. Since M
therefore generates mod-R, we have X € mod-R such that M ~ R&® X
= e R® (1 — ¢/)R & X. Inasmuch as ¢; R/4 and e, R/B are indecomposable,
and e;R,i = 1, ..., n, all have local endomorphism rings, then by the Krull-
Schmidt theorem cited above, necessarily e, R =~ ¢; R/I or ¢, R/K. In the first
case I splits via projectivity of e; R, so that indecomposability of e; R implies
that I = ¢ R, in whichcase K = ¢ RN K=1N K =0,0r I = 0. Thus /
= 0 or K = 0 (also in case ¢, R = ¢; R/K), proving uniformity of ¢, R, and of

e;R,i = 2,...,n by symmetry. Since every right prindec eR is isomorphic to
one of the ¢;R,i = 1, ..., n, then every right prindec of R is uniform, as
required.

To complete the proof of (1), we may assume R is self-basic. The top of any
right R-module M is defined to be M/MJ, where J = rad R, which is a
semiperfect ring in the largest semisimple factor module. If I is a right ideal
containing no ideals # 0, then the right module R/I is faithful, hence



28 CARL FAITH

generates mod-R. Since R is self-basic, then R/I ~ R & X for some X
€ mod-R. Hence |top R/I| = |top R| + |top X|. But top R/I = R/(I + J),
that is, |top R/I| < |top R| = |R/J|, and top X = X/XJ. It follows that
I C J,and X = XJ. Since X is finitely generalized, this implies X = 0, that
is, R/I = R, so I splits. Since I C J, this implies / = 0.

(2) In order to prove that R is right self-injective, it suffices to prove that R,
is. Moreover, R, is semiperfect with nil radical eyJe,, where ¢ is the basic
idempotent. Hence assume that R is self-basic.

Let u be an arbitrary element of the injective hull ¢/ R of e/lk and let
U= uR + ¢ R. Then,M = U + (1 — ¢ )R is a faithful and finitely generated
module, hence generates mod-R, so that M ~ R & X for some X € mod-R,
that is,

M=wuR+e¢R)®eR®-- - ®e,R~eR®e;,R®---de, RO X.

Now, inasmuch as e;Re; =~ End ¢;Rg is a local ring, i = 1,..., n, and
uR + ¢ R is indecomposable, the Krull-Schmidt theorem implies that ¢, R is
isomorphic to a direct summand of one of the direct summands of M. But,
since R is self-basic, and ¢;R is indecomposable, then e, R is not a direct
summand of ¢; R for i > 2, hence ¢, R is isomorphic to a direct summand at
U. But U is uniform (contained in the injective hull of the uniform module
e, R), so therefore U = uR + ¢ R =~ ¢, R. Hence B = End Uy is a local ring
~ e Re;, and Q = rad B is a nil ideal =~ e, Je, . Therefore, since the endomor-
phism f: U — U induced by the isomorphism U — ¢ R has zero kernel, then
fcannot lie in Q, that is, f cannot be nilpotent. Thus, f lies outside of Q, hence
fis a unit, so that U = f(U) = ¢ R. Since this is true for all u € & R, then
certainly 2 R = ¢, R, so ¢; R is injective. Similarly, e; R is injective, i > 2, and
so thenis R. O

7. COMMENT. It can be shown (Faith [7]) that any right FPF ring is right
bounded in the sense that every essential right ideal contains a nonzero ideal.
(Expressed otherwise: a cyclic module R/I is faithful only if / is inessential.)
This generalizes part of Theorem 1 to nonsemiperfect rings.

8. PROOF OF THEOREM 2. Let M = x; R + - - - + x, R be a finitely generated
faithful module. As in the proof of Theorem 1, we may suppose that R is self-
basic, and therefore, the right ideal K = M{_, ann x; is either 0, or else
contains an ideal B # 0. But then

n

n

i=1 i=1
contrary to the faithful hypothesis on M. Hence M., ann x; = 0, and
therefore R <> M" canonically. Since R is right self-injective, then R splits in
M", hence M" = R & X for some X € mod-R, so therefore, M generates
mod-R. This proves right FPF. O
We require the next lemma for the proof of Theorem 4. For a subset S of
R, we let St = {r € R|Sr = 0}, and S its left-right symmetry.

9. LEMMA. Let R be a self-basic semiperfect ring in which ideals faithful on the
right generate mod-R. Moreover, assume that an element ¢ of R is right regular
(in the sense that ¢+ = 0) only if cR = R. Then every simple left R-module V
embeds in R.
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PrOOF. Let V be a simple left R-module, and P = anng V. Since R is
semiperfect, then R/P is simple Artinian, and, since R is self-basic, R/P is a
field. Thus, V &~ R/P < R iff there is an x € R with Lx = P. Since Pis a
maximal left ideal, this happens iff PL s 0. Thus ¥ % R = PL = 0, hence
P generates mod-R by the hypothesis on ideals. Since R is self-basic, then
P~ R® X for some X € mod-R, and hence there exists ¢ € P with
¢t = 0. By the hypothesis on right regular elements, then P = R, a contra-
diction. This proves what we wanted. 0O

10. REMARKS. 1. Every right faithful ideal generates mod-R if R is right PF.

2. The hypothesis on ¢ holds if either R is right self-injective, or left perfect.

1 is obvious from the definition, and in 2, the map ¢cR — R sending ¢ — 1
has an extension to an element f € End Rg, when Ry is injective, and then
y = f(1) satisfies yc = 1. Then R semiperfect (in fact the nonexistence of
infinite sets of orthogonal idempotents suffices for this) yields ¢y = 1. Thus
¢cR = R.

When R is left perfect, then there exist an integer n and an element y € R
such that ¢"*'y = ¢". (This by the d.c.c. on principal right ideals, e.g. on
{c"R};_,.) Then ¢t = 0= cy = 1 as before. O

11. CorOLLARY (KATO [67]). If R is right PF then every simple left module
embeds in R.

Proofr. Right PF = semiperfect. We may assume that R is self-basic, and
apply 9, using 10. O

12. CoroLLARY (KATO [67)). A right PF ring is left PF iff left self-injective.

PrOOF. Immediate from 11 and the left-right symmetry of (PFs).

13. PROOF OF THEOREM 4. Immediate from 12 and Theorem 1.

14. PROOF OF COROLLARY 5. Apply Tachikawa’s theorem to get one-sided
PF, apply Theorem 4 to get two-sided PF, and then Osofsky’s theorem yields
QF (Osofsky [66]). O
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