INJECTIVE COGENERATOR RINGS AND A THEOREM OF TACHIKAWA¹

CARL FAITH

For Seth Camillo, and the happy parents.

ABSTRACT. Tachikawa showed that a left perfect ring R is an injective cogenerator in the category of all right R-modules iff there holds: (right FPF) every finitely generated faithful right module generates mod-R. In this paper, we simplify Tachikawa's long and difficult proof by first obtaining some new structure theorems for a general semiperfect right FPF ring R; the most important are: R is a direct sum of uniform right ideals, and every nonzero right ideal of the basic ring R_0 of R contains a nonzero ideal of R_0 . Furthermore, if the Jacobson radical rad R is nil, then R is right self-injective. Tachikawa's theorem is an immediate consequence. We also generalize a theorem of Osofsky on perfect PF rings to FPF rings.

- 1. Introduction. A ring R is said to be right (F)PF provided that every (finitely generated) faithful right module M generates the category mod-R of all right R-modules. Theorems of Azumaya [66], Osofsky [66], and Utumi [67] characterize a right PF ring by the equivalent conditions.
- (PF_1) R is right self-injective and semiperfect with essential right socle. (The socle is the largest semisimple submodule.)
 - (PF_2) R is right self-injective with finite essential right socle.
- (PF₃) R is a finite direct sum, $R = \sum_{i=1}^{n} \bigoplus e_i R$, where $e_i^2 = e_i \in R$ and $e_i R$ is a projective injective right ideal with simple socle, i = 1, ..., n.
 - (PF₄) R is an injective cogenerator in mod-R.
 - (PF₅) R is right self-injective and every simple right module embeds in R. (Compare Kato [68] and Onodera [68].)

These rings generalize the Quasi-Frobenius (QF) rings of Nakayama (the Artinian PF rings), and the twosided PF rings of Morita [58]. The latter rings possess a duality between the reflexive right R-modules and the reflexive left R-modules induced by $\operatorname{Hom}_R(\ ,R)$. A theorem of Tachikawa [69] establishes that any left perfect (in the sense of Bass [60]) right FPF ring R is actually right PF; consequently right Artinian right or left FPF rings are QF. In this paper we generalize Tachikawa's theorem (in (2) of Theorem 1) and in doing so obtain a simpler (and self-contained) proof. (Most undefined terms are explained in §2. Also, see Faith [76a], especially Chapter 24.)

1. Theorem. (1) If R is a semiperfect right FPF ring, then R is a direct sum of uniform right prindecs (= principal indecomposable right ideals), and every

Received by the editors April 28, 1975 and, in revised form, December 29, 1975.

AMS (MOS) subject classifications (1970). Primary 16A36, 16A52; Secondary 16A49, 16A64.

¹This article was written while the author held a Faculty Academic Leave from Rutgers University, 1973-74, and a visitor at the Institute for Advanced Study.

nonzero right ideal of the basic ring R_0 of R contains a nonzero ideal of R_0 . (2) Moreover, if rad R is a nil ideal, then R is right self-injective.

2. Theorem (Converse of Theorem 1). Any right self-injective semiperfect ring R is right FPF if every nonzero right ideal of the basic ring R_0 contains an ideal of R_0 .

Theorem 1 implies Tachikawa's theorem (via PF₁) since any left perfect ring has nil radical and essential right socle (Bass [60]). Incidentally this proves

- 3. COROLLARY. Any right (or left) perfect right FPF ring is right self-injective. We also prove
- 4. THEOREM. A left FPF right PF ring with nil radical is left PF.
- 5. COROLLARY. A left perfect left and right FPF right is QF.

The corollary generalizes the theorem of Osofsky [66] for one-sided perfect two-sided PF rings. The corresponding question for one-or even two-sided perfect one-sided PF rings is open.

- 2. **Background.** Before going to the proofs of the stated theorem, we supply the relevant background material for these.
- 2.1 DEFINITION AND PROPOSITION. Let mod-R denote the category of right R-modules for a ring R. An object M of mod-R is a generator iff the equivalent conditions hold:
 - G1. The set-valued functor $\operatorname{Hom}_{R}(M,)$ is faithful.
- G2. Given an object X of mod-R, there is an index set I and an exact sequence $M^{(I)} \to X \to 0$, where $M^{(I)}$ is the coproduct of I copies of M.
- G3. There is a finite integer n > 0, an object Y of mod-R, and an isomorphism $M^n \approx R \oplus Y$.
 - G4. The trace ideal trace_R $M = \sum_{f_e \text{Hom}_R(M,R)} f(M)$ equals R.
- 2.2 DEFINITION AND PROPOSITION (MORITA). Let R-mod denote the left-right symmetry of mod-R. Two rings A and B are similar provided that the equivalent conditions hold:
 - S1. $mod-A \approx mod-B$.
- S2. There exists a finitely generated projective generator P of mod-A such that $B \approx \text{End } P_A$.
 - S3. A-mod $\approx B$ -mod.

In the case S2, $\operatorname{Hom}_A(P,)$ induces an equivalence $\operatorname{mod-}A \approx \operatorname{mod-}B$ and the left adjoint $\otimes_B P$ is the inverse equivalence. (The equivalence of S1-S3 is Morita's theorem [58]. Cf. Bass [68] or Faith [73, Theorem 4.29].)

A Morita invariant property of A is a property defined for the category of rings which A and any ring similar to A possesses.

Semiperfect rings. Let $R = \bigoplus_{i=1}^n e_i R$ be a direct sum decomposition of R into principal indecomposable right ideals $e_1 R, \ldots, e_n R$. By definition, then, e_i is an idempotent $\neq 0$, $e_i Re_i$ is a local ring, and $e_i R$ is an indecomposable right ideal, which we call a right prindec, for short, $i = 1, \ldots, n$. By a theorem of Bass [60], a ring R has such a decomposition if (and only if) R is semiperfect in the sense that R/rad R is semisimple, or, as we say, R is semilocal, and idempotents of R lift modulo rad R.

Basic modules and rings. Now assume the notation above. Renumber idempotents if necessary so that $e_1 R/e_1 J, \ldots, e_m R/e_m J$ constitute the isomorphism classes of simple right modules. Thus, every simple module \approx some $e_i R/e_i J$, with $i \leqslant m$, and $e_i R/e_i J \approx e_k R/e_k J$ iff i=k, for all i and $k \leqslant m$. The right ideal $B=e_1 R+\cdots+e_m R$ is called the **basic right** module of R, $e_0=e_1+\cdots+e_m$ is then called the **basic idempotent**, and $e_0 Re_0 \approx \operatorname{End} B_R$ is the **basic ring** of R. The basic module is unique up to isomorphism, and if f_0 is any other basic idempotent, there is a unit x of R such that $f_0=xe_0x^{-1}$. Furthermore, R is the unique (up to isomorphism) minimal (finitely generated projective) generator of mod-R, and, in fact, if R is any other generator, there is a module R of mod-R, and an isomorphism R is any other generator, there is a module R of mod-R, and an isomorphism R is a module R of mod-R, and an isomorphism R is a module R of mod-R, and an isomorphism R is a module R is a local ring, then, for some R is a direct summand of R is indecomposable, then R is a direct summand of R is indecomposable, then R is a direct summand of R is indecomposable, then R is a direct summand of R is indecomposable, then R is a direct summand of R is indecomposable, then R is a direct summand of R is indecomposable, then R is a direct summand of R is indecomposable, then R is a direct summand of R is indecomposable, then R is a direct summand of R is indecomposable, then R is a direct summand of R is indecomposable, then R is a direct summand of R is indecomposable, then R is a direct summand of R is indecomposable, then R is a direct summand of R is a direct summand of R is independent the induction of R in R in

By the Morita theorem, every semiperfect ring R is similar to its basic ring. The ring R is said to be **self-basic** iff R = B. (This condition is right-left symmetric, inasmuch as R is self-basic iff R/rad R is a finite product of fields.) The basic ring of a ring is self-basic. Categorical properties such as R is right self-injective (= finitely generated projective right modules are injective) are Morita invariant properties, and therefore hold for R iff they hold for the basic ring of R.

The term **uniform** is used in Goldie's sense, namely, a right module (or right ideal) U is uniform iff $I \cap K = 0$ for two submodules I and K imply that I = 0 or K = 0. Equivalently, the injective hull $E = \hat{U}$ of U is indecomposable. (In this case, $B = \text{End } E_R$ is a local ring by a theorem of Utumi [56].)

3. **Proofs of Theorems.** We begin with:

6. PROOF OF THEOREM 1. Let B be the basic right module, and let $B = e_1 R \oplus \cdots \oplus e_n R$ be its decomposition into a direct sum of mutually nonisomorphic right prindecs (see §2). Suppose, for example, that $I \cap K = 0$ for two submodules I and K of e_1 R. Then, $M = e_1 R/I \oplus e_1 R/K \oplus (1 - e_1)R$ is a faithful right module inasmuch as its annihilator ideal Q annihilates $(1-e_1)R$ and e_1R , that is, Q annihilates B, which is faithful. Since M therefore generates mod-R, we have $X \in \text{mod-R}$ such that $M \approx R \oplus X$ $= e_1 R \oplus (1 - e_1) R \oplus X$. Inasmuch as $e_1 R/A$ and $e_2 R/B$ are indecomposable, and $e_i R$, i = 1, ..., n, all have local endomorphism rings, then by the Krull-Schmidt theorem cited above, necessarily $e_1 R \approx e_1 R/I$ or $e_1 R/K$. In the first case I splits via projectivity of $e_1 R$, so that indecomposability of $e_1 R$ implies that $I = e_1 R$, in which case $K = e_1 R \cap K = I \cap K = 0$, or I = 0. Thus I = 0 or K = 0 (also in case $e_1 R \approx e_1 R/K$), proving uniformity of $e_1 R$, and of $e_i R$, i = 2, ..., n, by symmetry. Since every right prindec eR is isomorphic to one of the $e_i R$, i = 1, ..., n, then every right prindec of R is uniform, as required.

To complete the proof of (1), we may assume R is self-basic. The top of any right R-module M is defined to be M/MJ, where J = rad R, which is a semiperfect ring in the largest semisimple factor module. If I is a right ideal containing no ideals $\neq 0$, then the right module R/I is faithful, hence

28 CARL FAITH

generates mod-R. Since R is self-basic, then $R/I \approx R \oplus X$ for some $X \in \text{mod-}R$. Hence |top R/I| = |top R| + |top X|. But top R/I = R/(I+J), that is, $|\text{top }R/I| \leqslant |\text{top }R| = |R/J|$, and top X = X/XJ. It follows that $I \subseteq J$, and X = XJ. Since X is finitely generalized, this implies X = 0, that is, $R/I \approx R$, so I splits. Since $I \subseteq J$, this implies I = 0.

(2) In order to prove that R is right self-injective, it suffices to prove that R_0 is. Moreover, R_0 is semiperfect with nil radical $e_0 J e_0$, where e_0 is the basic idempotent. Hence assume that R is self-basic.

Let u be an arbitrary element of the injective hull $e_1 R$ of $\widehat{e_1 R}$, and let $U = uR + e_1 R$. Then, $M = U + (1 - e_1)R$ is a faithful and finitely generated module, hence generates mod-R, so that $M \approx R \oplus X$ for some $X \in \text{mod-}R$, that is,

$$M = (uR + e_1 R) \oplus e_2 R \oplus \cdots \oplus e_n R \approx e_1 R \oplus e_2 R \oplus \cdots \oplus e_n R \oplus X.$$

Now, inasmuch as $e_i R e_i \approx \operatorname{End} e_i R_R$ is a local ring, $i=1,\ldots,n$, and $uR+e_1R$ is indecomposable, the Krull-Schmidt theorem implies that e_1R is isomorphic to a direct summand of one of the direct summands of M. But, since R is self-basic, and e_iR is indecomposable, then e_1R is not a direct summand of e_iR for $i \geq 2$, hence e_1R is isomorphic to a direct summand at U. But U is uniform (contained in the injective hull of the uniform module e_1R), so therefore $U=uR+e_1R\approx e_1R$. Hence $B=\operatorname{End} U_R$ is a local ring e_1Re_1 , and e_1Re_1 and e_1Re_1 is a nil ideal e_1Re_1 . Therefore, since the endomorphism e_1Re_1 induced by the isomorphism e_1Re_1 has zero kernel, then e_1Re_1 cannot lie in e_1Re_1 , so that e_1Re_1 is injective. Thus, e_1Re_1 lies outside of e_1Re_1 , then certainly e_1Re_1 is injective. Similarly, e_1Re_1 is injective, e_1Re_1 is injective.

- 7. COMMENT. It can be shown (Faith [7]) that any right FPF ring is **right bounded** in the sense that every essential right ideal contains a nonzero ideal. (Expressed otherwise: a cyclic module R/I is faithful only if I is inessential.) This generalizes part of Theorem 1 to nonsemiperfect rings.
- 8. PROOF OF THEOREM 2. Let $M = x_1 R + \cdots + x_n R$ be a finitely generated faithful module. As in the proof of Theorem 1, we may suppose that R is selfbasic, and therefore, the right ideal $K = \bigcap_{i=1}^{n} \operatorname{ann} x_i$ is either 0, or else contains an ideal $B \neq 0$. But then

$$MB = \sum_{i=1}^{n} x_i RB = \sum_{i=1}^{n} x_i B = 0$$

contrary to the faithful hypothesis on M. Hence $\bigcap_{i=1}^n \operatorname{ann} x_i = 0$, and therefore $R \hookrightarrow M^n$ canonically. Since R is right self-injective, then R splits in M^n , hence $M^n \approx R \oplus X$ for some $X \in \operatorname{mod-}R$, so therefore, M generates $\operatorname{mod-}R$. This proves right FPF. \square

We require the next lemma for the proof of Theorem 4. For a subset S of R, we let $S^{\perp} = \{r \in R | Sr = 0\}$, and $^{\perp}S$ its left-right symmetry.

9. Lemma. Let R be a self-basic semiperfect ring in which ideals faithful on the right generate mod-R. Moreover, assume that an element c of R is right regular (in the sense that $c^{\perp} = 0$) only if cR = R. Then every simple left R-module V embeds in R.

PROOF. Let V be a simple left R-module, and $P = \operatorname{ann}_R V$. Since R is semiperfect, then R/P is simple Artinian, and, since R is self-basic, R/P is a field. Thus, $V \approx R/P \hookrightarrow R$ iff there is an $x \in R$ with $^{\perp}x = P$. Since P is a maximal left ideal, this happens iff $P^{\perp} \neq 0$. Thus $V \not\hookrightarrow R \Rightarrow P^{\perp} = 0$, hence P generates mod-R by the hypothesis on ideals. Since R is self-basic, then $P \approx R \oplus X$ for some $X \in \text{mod-}R$, and hence there exists $c \in P$ with $c^{\perp} = 0$. By the hypothesis on right regular elements, then P = R, a contradiction. This proves what we wanted.

- 10. REMARKS. 1. Every right faithful ideal generates mod-R if R is right PF.
- 2. The hypothesis on c holds if either R is right self-injective, or left perfect.

1 is obvious from the definition, and in 2, the map $cR \rightarrow R$ sending $c \mapsto 1$ has an extension to an element $f \in \operatorname{End} R_R$, when R_R is injective, and then y = f(1) satisfies yc = 1. Then R semiperfect (in fact the nonexistence of infinite sets of orthogonal idempotents suffices for this) yields cy = 1. Thus cR = R.

When R is left perfect, then there exist an integer n and an element $y \in R$ such that $c^{n+1}y = c^n$. (This by the d.c.c. on principal right ideals, e.g. on $\{c^n R\}_{n=1}^{\infty}$.) Then $c^{\perp} = 0 \Rightarrow cy = 1$ as before. \square

11. COROLLARY (KATO [67]). If R is right PF then every simple left module embeds in R.

PROOF. Right $PF \Rightarrow$ semiperfect. We may assume that R is self-basic, and apply 9, using 10. □

12. COROLLARY (KATO [67]). A right PF ring is left PF iff left self-injective.

PROOF. Immediate from 11 and the left-right symmetry of (PF₅).

- 13. Proof of Theorem 4. Immediate from 12 and Theorem 1.
- 14. PROOF OF COROLLARY 5. Apply Tachikawa's theorem to get one-sided PF, apply Theorem 4 to get two-sided PF, and then Osofsky's theorem yields **OF** (Osofsky [66]). □

REFERENCES

- [66] G. Azumaya, Completely faithful modules and self-injective rings, Nagoya Math. J. 27 (1966), 697-708. MR 35 #4253.
- [60] H. Bass, Finistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488. MR 28 # 1212.
 - [68] —, Algebraic K-theory, Benjamin, New York, 1968. MR 40 #2736.
- [67] C. Faith and E. A. Walker, Direct-sum representations of injective modules, J. Algebra 5 (1967), 203–221. MR 34 #7575.
- [73] C. Faith, Algebra: Rings, modules and categories. I, Springer-Verlag, Berlin and New York, 1973.
- [76a] —, Algebra II: Ring theory, Springer-Verlag, Berlin and New York, 1976.
 [76b] —, Characterizations of rings by faithful modules, Lecture Notes, Math. Dept., Technion, Haifa, Israel.
- [58] E. Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511-528. MR 20 #5800.
- [58] K. Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Diagaku Sect A 6 (1958), 83-142. MR 20 #3183.

- [67] T. Kato, Self-injective rings, Tôkoku Math. J. (2) 19 (1967), 485-495. MR 37 #247.
- [68] ——, Some generalizations of QF-rings, Proc. Japan Acad. 44 (1968), 114-119. MR 38 #183.
 - [68] T. Onodera, Über Kogeneratoren, Arch. Math. (Basel) 19 (1968), 402-410. MR 38 #2170.
- [66] B. L. Osofsky, A generalization of quasi-Frobenius rings, J. Algebra 4 (1966), 373-387. MR 34 #4305; erratum, 36 #6443.
- [69] H. Tachikawa, A generalization of quasi-Frobenius rings, Proc. Amer. Math. Soc. 20 (1969), 471-476. MR 38 #5849.
 - [56] Y. Utumi, On quotient rings, Osaka Math. J. 8 (1956), 1-18. MR 18, 7.
 - [67] —, Self-injective rings, J. Algebra 6 (1967), 56-64. MR 35 #219.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903