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Abstract. Tachikawa showed that a left perfect ring R is an injective

cogenerator in the category of all right /{-modules iff there holds: (right FPF)

every finitely generated faithful right module generates mod-i?. In this paper,

we simplify Tachikawa's long and difficult proof by first obtaining some new

structure theorems for a general semiperfect right FPF ring R; the most

important are: R is a direct sum of uniform right ideals, and every nonzero right

ideal of the basic ring R0 of R contains a nonzero ideal of R0. Furthermore, if

the Jacobson radical rad/? is nil, then R is right self-injective. Tachikawa's

theorem is an immediate consequence. We also generalize a theorem of

Osofsky on perfect PF rings to FPF rings.

1. Introduction. A ring R is said to be right (F)PF provided that every

(finitely generated) faithful right module M generates the category mod-/? of

all right Ä-modules. Theorems of Azumaya [66], Osofsky [66], and Utumi [67]

characterize a right PF ring by the equivalent conditions.

(PFj) R is right self-injective and semiperfect with essential right socle. (The

socle is the largest semisimple submodule.)

(PF2) R is right self-injective with finite essential right socle.

(PF3) R is a finite direct sum, R — 2,"= i ®e¡ R, where ef = e¡ Œ R and e, R

is a projective injective right ideal with simple socle, i = 1, ..., n.

(PF4) R is an injective cogenerator in mod-/?.

(PF5) R is right self-injective and every simple right module embeds in R.

(Compare Kato [68] and Onodera [68].)

These rings generalize the Quasi-Frobenius (QF) rings of Nakayama (the

Artinian PF rings), and the twosided PF rings of Morita [58]. The latter rings

possess a duality between the reflexive right A-modules and the reflexive left

/?-modules induced by HomÄ ( ,R). A theorem of Tachikawa [69] establishes

that any left perfect (in the sense of Bass [60]) right FPF ring R is actually right

PF; consequently right Artinian right or left FPF rings are QF. In this paper

we generalize Tachikawa's theorem (in (2) of Theorem 1) and in doing so

obtain a simpler (and self-contained) proof. (Most undefined terms are

explained in §2. Also, see Faith [76a], especially Chapter 24.)

1. Theorem. (1) // R is a semiperfect right FPF ring, then R is a direct sum of

uniform right prindecs (= principal indecomposable right ideals), and every
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nonzero right ideal of the basic ring R0 of R contains a nonzero ideal of R0. (2)

Moreover, i/rad R is a nil ideal, then R is right self-injective.

2. Theorem (Converse of Theorem 1). Any right self-injective semiperfect

ring R is right FPF if every nonzero right ideal of the basic ring R0 contains an

ideal of R0.

Theorem 1 implies Tachikawa's theorem (via PF,) since any left perfect ring

has nil radical and essential right socle (Bass [60]). Incidentally this proves

3. Corollary. Any right (or left) perfect right FPF ring is right self-injective.

We also prove

4. Theorem. A left FPF right PF ring with nil radical is left PF.

5. Corollary. A left perfect left and right FPF right is QF.

The corollary generalizes the theorem of Osofsky [66] for one-sided perfect

two-sided PF rings. The corresponding question for one- or even two-sided

perfect one-sided PF rings is open.

2. Background. Before going to the proofs of the stated theorem, we supply

the relevant background material for these.
2.1 Definition and Proposition. Let mod-/? denote the category of right

/^-modules for a ring R. An object M of mod-R is a generator iff the equivalent

conditions hold:

Gl. The set-valued functor Hom^ (M, ) is faithful.
G2. Given an object X of mod-R, there is an index set I and an exact sequence

M"'^>X^>0, where A/'" is the coproduct of I copies of M.

G3. There is a finite integer n > 0, an object Y ofmod-R, and an isomorphism

M" « R® Y.

G4. The trace ideal trace Ä M = S^Hom (M R)fW) equals R.

2.2 Definition and Proposition (Morita). Let R-mod denote the left-right

symmetry of mod-/?. Two rings A and B are similar provided that the equivalent

conditions hold:
51. mod-A « mod-/?.
52. There exists a finitely generated projective generator P of mod-A such that

B « End PA .

53. A-mod « B-mod.
In the case S2, Hom^ (P, ) induces an equivalence mod-A « mod-/? and the left

adjoint ®b^ 's tne inverse equivalence. (The equivalence of S1-S3 is Morita's

theorem [58]. Cf. Bass [68] or Faith [73, Theorem 4.29].)

A Morita invariant property of A is a property defined for the category of

rings which A and any ring similar to A possesses.

Semiperfect rings. Let R = (B"=xe,R be a direct sum decomposition of R

into principal indecomposable right ideals ex R, ..., e„R. By definition, then,

e¡ is an idempotent ¥= 0, e¡ Re¡ is a local ring, and e¡ R is an indecomposable

right ideal, which we call a right prindec, for short, i = 1, ...,«. By a

theorem of Bass [60], a ring R has such a decomposition if (and only if) R is

semiperfect in the sense that R/rad R is semisimple, or, as we say, R is

semilocal. and idempotents of R lift modulo rad R.
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Basic modules and rings. Now assume the notation above. Renumber

idempotents if necessary so that ex R/ex /,..., em R/emJ constitute the isomor-

phism classes of simple right modules. Thus, every simple module « some

e¡R/e¡J, with /' < m, and e,/?/«?,./ » ekR/ekJ iff i = k, for all ; and k < m.

The right ideal B = ex /? + ••• + em R is called the basic right module of R,

e0 = ex + • ■ ■ + em is then called the basic idempotent, and e0 Re0 « End BR

is the basic ring of R. The basic module is unique up to isomorphism, and if

/0 is any other basic idempotent, there is a unit x of R such that/0 = xec¡x~x.

Furthermore, B is the unique (up to isomorphism) minimal (finitely generated

projective) generator of mod-/?, and, in fact, if G is any other generator, there

is a module X of mod-/?, and an isomorphism G « B © X. (This follows from

the Krull-Schmidt theorem. See, e.g., Bass [68, p. 19, (3.5)].) Thus, if M

= Mi © • • • © Mn = A © X, for modules M¡, A, and X, i — \, ..., n, where

EndAR is a local ring, then, for somtj, A is a direct summand of Mj. Thus, if

each Mi is indecomposable, then M., — A.

By the Morita theorem, every semiperfect ring R is similar to its basic ring.

The ring R is said to be self-basic iff R = B. (This condition is right-left

symmetric, inasmuch as R is self-basic iff R/rad Ris a finite product of fields.)

The basic ring of a ring is self-basic. Categorical properties such as R is right

self-injective (= finitely generated projective right modules are injective) are

Morita invariant properties, and therefore hold for R iff they hold for the basic

ring of R.

The term uniform is used in Goldie's sense, namely, a right module (or right

ideal) U is uniform iff / n K = 0 for two submodules / and K imply that

/ = 0 or K = 0. Equivalently, the injective hull E = Û of U is indecomposa-

ble. (In this case, B = Endis^ is a local ring by a theorem of Utumi [56].)

3. Proofs of Theorems. We begin with:

6. Proof of Theorem 1. Let B be the basic right module, and let

B = exR ® ■ ■ • ® enR be its decomposition into a direct sum of mutually

nonisomorphic right prindecs (see §2). Suppose, for example, that / n K = 0

for two submodules / and K of ex R. Then, M = ex R/I © ex R/K © (1 - ex )R

is a faithful right module inasmuch as its annihilator ideal Q annihilates

(1 - ex)R and exR, that is, Q annihilates B, which is faithful. Since M

therefore generates mod-/?, we have X G mod-/? such that M « /? © X

= ex R © (1 — ex)R © X. Inasmuch as ex R/A and e2R/B are indecomposable,

and e¡R,i= 1, ..., n, all have local endomorphism rings, then by the Krull-

Schmidt theorem cited above, necessarily ex R « ex R/I or ex R/K. In the first

case / splits via projectivity of ex R, so that indecomposability of ex R implies

that I = exR, in which case K = exRDK = lnK = 0, or I = 0. Thus /

= 0 or K = 0 (also in case ex R « ex R/K), proving uniformity of ex R, and of

e¡R, i — 2, ..., n, by symmetry. Since every right prindec eR is isomorphic to

one of the e¡R, i = 1, ..., n, then every right prindec of /? is uniform, as

required.

To complete the proof of (1), we may assume /? is self-basic. The top of any

right /?-module M is defined to be M/MJ, where I = rad /?, which is a

semiperfect ring in the largest semisimple factor module. If / is a right ideal

containing no ideals  =£  0.  then  the right module  R/I is faithful,  hence
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generates mod-/?. Since R is self-basic, then R/I « R © X for some X

G mod-/?. Hence |top R/I\ = |top /?| + |top A"|. But top R/I = /?/(/ + 7),

that is, |top R/I\ < |top R\ = |/?/7|, and top A" = X/XJ. It follows that
I Q J, and A" = XJ. Since A" is finitely generalized, this implies X = 0, that

is, a// « /?, so / splits. Since I Q J, this implies / = 0.

(2) In order to prove that R is right self-injective, it suffices to prove that Ä0

is. Moreover, R0 is semiperfect with nil radical e0Je0, where e0 is the basic

idempotent. Hence assume that R is self-basic.

Let u be an arbitrary element of the injective hull ex R of e^K, and let

U = uR + ex R. Then, M = U + (I - ex)Ris a faithful and finitely generated

module, hence generates mod-Ä, so that M œ R © X for some X G mod-R,

that is,

M = (uR + ex R) © e2R © • • ■ © e„R « ex R © e2R © ■ • • © enR © A\

Now, inasmuch as e,/?e, « End e,ÄÄ is a local ring, z'= 1, ...,«, and

«Ä + e, R is indecomposable, the Krull-Schmidt theorem implies that <?, Ä is

isomorphic to a direct summand of one of the direct summands of M. But,

since R is self-basic, and e¡R is indecomposable, then exR is not a direct

summand of e, /? for / > 2, hence e, Ä is isomorphic to a direct summand at

U. But t/ is uniform (contained in the injective hull of the uniform module

ex R), so therefore U = uR + ex R « ex R. Hence B = End UR is a local ring

« ex Rex, and Q = rad B is a nil ideal « e, /t^ . Therefore, since the endomor-

phism /: U —> U induced by the isomorphism U -* exR has zero kernel, then

/cannot lie in Q, that is,/cannot be nilpotent. Thus,/lies outside of Q, hence

/ is a unit, so that U = f(U) = exR. Since this is true for all u G êy/t, then

certainly ex R = ex R, so ex R is injective. Similarly, e, R is injective, i > 2, and

so then is /?.    D

7. Comment. It can be shown (Faith [7]) that any right FPF ring is right

bounded in the sense that every essential right ideal contains a nonzero ideal.

(Expressed otherwise: a cyclic module R/I is faithful only if / is inessential.)

This generalizes part of Theorem 1 to nonsemiperfect rings.

8. Proof of Theorem 2. Let M = xx R + • • • + xn R be a finitely generated

faithful module. As in the proof of Theorem 1, we may suppose that /? is self-

basic, and therefore, the right ideal K = (\f-i ann x¡ is either 0, or else

contains an ideal B ^ 0. But then

MB = 2 x.RB = 2 x¡B = 0
i=i ;=i

contrary to the faithful hypothesis on M. Hence D"= x ann x¡ = 0, and

therefore /? <L-* Mn canonically. Since /? is right self-injective, then R splits in

M", hence M" « /? © X for some X G mod-R, so therefore, M generates

mod-Ä. This proves right FPF.    □

We require the next lemma for the proof of Theorem 4. For a subset 5 of

R, we let S1 = {r G R\Sr = 0}, and X,S its left-right symmetry.

9. Lemma. Let R be a self-basic semiperfect ring in which ideals faithful on the

right generate mod-/?. Moreover, assume that an element c of R is right regular

(in the sense that c1 = 0) only if cR = R. Then every simple left R-module V

embeds in R.
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Proof. Let K be a simple left /?-module, and P = annÄ V. Since R is

semiperfect, then R/P is simple Artinian, and, since R is self-basic, R/P is a

field. Thus, V « R/P ^ R iff there is an x G R with xx = P. Since P is a

maximal left ideal, this happens iff P1 #0. Thus V ¥* R =* P1 =0, hence

P generates mod-/? by the hypothesis on ideals. Since R is self-basic, then

P « /? © X for some X G mod-/?, and hence there exists c G P with

c1 = 0. By the hypothesis on right regular elements, then P = R, a contra-

diction. This proves what we wanted.    D

10. Remarks. 1. Every right faithful ideal generates mod-/? if /? is right PF.

2. The hypothesis on c holds if either /? is right self-injective, or left perfect.

1 is obvious from the definition, and in 2, the map cR —> R sending c h> 1

has an extension to an element/ G End/?Ä, when RR is injective, and then

y =/(l) satisfies yc = 1. Then R semiperfect (in fact the nonexistence of

infinite sets of orthogonal idempotents suffices for this) yields cy = 1. Thus

cR = R.
When /? is left perfect, then there exist an integer n and an element y G R

such that cn+ly = c". (This by the d.c.c. on principal right ideals, e.g. on

{c"R}™=x.) Then c1 = 0 => cy = 1 as before.    D

11. Corollary (Kato [67]). // /? is right PF then every simple left module

embeds in R.

Proof. Right PF => semiperfect. We may assume that /? is self-basic, and

apply 9, using 10.    D

12. Corollary (Kato [67]). A right PF ring is left PF iff left self-injective.

Proof. Immediate from 11 and the left-right symmetry of (PF5).

13. Proof of Theorem 4. Immediate from 12 and Theorem 1.

14. Proof of Corollary 5. Apply Tachikawa's theorem to get one-sided

PF, apply Theorem 4 to get two-sided PF, and then Osofsky's theorem yields

QF (Osofsky [66]).    D
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