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ON HOMOCLINIC POINTS

S. NEWHOUSE

Abstract. Results of R. C. Robinson and D. Pixton on the existence of

homoclinic points for diffeomorphisms on the two-sphere are extended. An

application to area preserving diffeomorphisms on surfaces is given.

The purpose of this note is to extend results of Robinson [7] and Pixton [5]

concerning the existence of homoclinic points for diffeomorphisms on two-di-

mensional manifolds.

The basic problem is this. Suppose y E Cl Wu(p, f) n iW'ip, f) - {p})

where p is a hyperbolic periodic point of a C diffeomorphism/of a manifold

r > 1, W"ip, f) is the unstable manifold of p while W'ip, f) is the stable

manifold of p. Is there a small C perturbation g of f such that p is a

hyperbolic periodic point of g and y G W"ip, g) n Wsip, g)l Following

Poincaré, such a point/ in W"ip, g) n W'ip, g) is called a homoclinic point

for g. We will also say that y is (/>, g)-homoclinic. Homoclinic points

generally yield interesting phenomena. In particular, as Smale realized [8], [2,

Appendix], they usually give the existence of infinitely many periodic points.

From [5] and [7], the above question has a positive answer on the two-

sphere if W"ip,f) n Wsip,f) = 0. Here we shall consider any two-dimen-

sional manifold M and a C diffeomorphism /: M —> M having a hyperbolic

periodic saddle point/;. We use the Whitney C topology for perturbations of

/. Assume that W"ip,f) and Wsip,f) already have a nonempty transversal

intersection, say yx. Let W"ip, f) be the component of W"(p, f) - {p}

containing yx, and let Wxs(p, f) be the component of Ws(p, f) - {p}

contining yx. We wish to take another point y in W\(p, f) and give a

sufficient condition for y to become ip, g)-homoclinic for a small C

perturbation g of f. Let W^ip,f) be the component of W"ip,f) - {p} not

meeting Wxuip,f).

Let £2(/) denote the nonwandering set of / and let aiy, f) denote the

a-limit set of y. We recall that x G Í2(/) if and only if there are sequences

x¡ -* x and ni —> oo with /""(.x,) -» x as /' —> oo while x G aiy, f) if and only if

there is a sequence ai, —» — oo with f'iy) —> x as ¡' —> oo.

Theorem 1. With the above notations, assume y is in Q(f),p is not in a(y,f),

and W{¡(p, f) has some nonempty transversal intersection with W"(q, f) for
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some hyperbolic periodic point q of f. Then f may be C perturbed to g so that y

is ip, g)-homoclinic.

Proof. Let 5 be a compact arc in IVsip, f) containing p and yx in its

interior. Choose a small arc Vx in W"(p,f) such that y, is in its interior and

Vx n S = {yx). Let n0 be the least integer so that /"<>(/») = p. Let V2 be a

small arc in W'iq, f) having a nonempty transversal intersection with

rV¡¡Íp,f) in its interior. Observe that q must be a saddle point or a sink. From

the A-lemma [4], there are arcs in

S' = U /*"°(5)   and    V2 = U f"* iV2)
k<0 k<0

which are uniformly C1 close to S. Hence, replacing y, by another element of

its orbit if necessary, we may find a box-like closed neighborhood TV of y

whose boundary dN = TV" u Ns where TV" consists of an arc in Vx and an

arc in/"°K, while TVJ consists of an arc in 5' and an arc in V-.

The following figure describes TV and 3TV.

Since p & aiy, f), we have that S n aiy, f) = 0 by the invariance of

aiy, /). Since 0(7,/) is closed we have that aiy,f) n TV = 0 provided the

arcs in Ns are close enough to S. Choosing these arcs even closer we may

arrange that /""(.y) G TV for all « > 0 and /""(TV") n int TV = 0 for all

« > 0.

For zEM, let o_(z, /) = {/""(z): « > 0}, and let o(z) = {/"(z): « = 0,

±1, ±2, . . . }. We claim

(1) there is a sequence x, G W"(o(p),/), / = 1, 2, . . . , converging toy so

that o_(x¡,f) n int TV = 0 for all large i.

Here !*->(/»),/)= U2£o,p>rV?ip,f).

Once (1) is established, standard methods, as in Robinson [7], enable one to

perturb / to g so that p is a hyperbolic saddle periodic point for g and

W(o(p), g) has a transversal intersection with Ws(p, g) a\y. Then it follows

from Corollary (1.3) in [4] that W(p, g) has transversal intersections with

Ws(p, g) arbitrarily near^. In fact, it is known that such points y¡ may be
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found whose orbits o(y¡) are near y only at yt. From this, g may be further

perturbed to gx so that y becomes (p, gx) homoclinic.

We now prove (1). The method is a variant of the one introduced in [7],

For each integer ai > 0, let Dn = U X<J<JJ(N). Since o_iy,f) n N = 0,

we have that y E Dn for each ai. Let xn be the point of Dn closest to y.

Clearly,

x„EdDnc    U    3(/W)=    U    [/(#") U/(#')].
1 < 7 < n 1 < y' < n

We may choose a neighborhood £/ of y so that/"(/VJ) n U = 0 for ai > 0,

since for ai > 0, f~"(y) E N, and f"iNs) n aV = 0 for ai large. Since / is

nonwandering for/, there are sequences/,. -*y and ai, —> oo so that/"■(/,) —>/

as i -» oo. Thus, for i large, {/,,/"'(/,)} C Ar. Hence /"'(A7) accumulates on/,

so xn -»/ as /-> oo. Let ai, > 0 be such that for i > «,, x„ G U. Then

Suppose o_(jc , /) n int N ^ 0 for some i > ai,. Then there is an integer

k, > 0 so that/"*>(*«,) e int # or *», G int/*<(#). Since U„>0/""(^") n

int N = 0, we see that 0 < ac, < ai,. But then xn¡ E /**(int V) c int Z>„, which

is impossible since x E dDn. Thus, for i > nx, o_(x„, /) n int N = 0, and

the proof is completed.

Remarks 1. Notice that the a-limit set condition on y will be fulfilled if

y G W"iqx,f) for some hyperbolic periodic point qx not in the orbit of p.

2. If y actually is a transversal homoclinic point for (/»,/") then W"iy,f) is

a limit of infinitely many unstable manifolds of different hyperbolic periodic

orbits. Thus,/ is a limit of points/, in Ws(y,f) so that/i G «(/,,/)• Theorem

1 should be thought of as a sort of converse to this.

There are analogous results when / is area preserving. Indeed, if M has a

smooth 2-form w with io(p) ^ 0, f*co = w, and JM w < oo, then the perturba-

tion g of /in Theorem 1 may be chosen so that g*w = w as well. For this one

uses generating functions as in [1], [3, §2], Also, in this case, the point/ (and

all points in Wu(p,f) U W*ip,f)) will automatically be nonwandering, so

that hypothesis may be dropped. Moreover, one has the following result.

Theorem 2. Let p be a hyperbolic periodic point of a diffeomorphism f on an

orientable two-dimensional manifold M having a transversal homoclinic point.

Suppose there is a smooth 2-form to on M with «(/>) ^ 0, f*u = w, and

fMu < oo. Let q be another hyperbolic periodic point of f, and let y E W"(q)

Pi W'ip). Then f may be Cr perturbed to g so that g*u> = « and y is a limit of

ip, g) homoclinic points.

Proof. By [6], we first perturb / to /, so that / is a transversal intersection

of W"iq, /,) and W'ip, /,). For /, close enough to /, ip, /,) still has a

transversal homoclinic point.

By Smale's homoclinic point theorem [8], [2, Appendix], p is a limit of a

sequence of hyperbolic saddle periodic pointsp¡ of/, such that W'ip¡,fx) has

nonempty transversal intersections with W"iq,fx), say/,, near/. Further, it is
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easily seen that the /»,'s may be chosen so that both components of

W"(pi,fx) - {/»,} meet yVs(p¡,fx). Observe that the /,'s are nonwandering

points for i large. Indeed, since u>ip) =£ 0, we have <¿(f"(y)) ¥= 0 for n > 0

large, so u(y) ¥= 0 as/fw = w. Hence for / large, «(y,-) i= 0. For any such/,, if

U is a small neighborhood of y¡, we have fvu > 0. Since /,_, ruu < fMu <

oo, there are integers 0 < nx < n2 so that f"l(U) n fx2(U) ¥= 0, whence

/^""'(ÍT) n U ¥= 0. Thus, >>,. is nonwandering. By Theorem 1 and the re-

marks about generating functions preceding the statement of Theorem 2, /,

may be perturbed to make y¡ homoclinic, and Theorem 2 is proved.

Remark. If M is compact, and / is area preserving, then Poincaré expected

that generically W"(p) n Ws(p) would be dense in W(p) for any hyper-

bolic periodic point p. Takens has proved this in the C1 topology [9].

However, the problem remains unsolved in the C topology, r > 2.
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