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Abstract. Holomorphic maps of the unit disk into a complex manifold X,

which miss an analytic subset A of codimension > 2, are shown to be dense

in all holomorphic maps of the disk into X. This implies that the Kobayashi

pseudodistance on X - A is the same as that on X, and thus leads to some

new examples of nonhyperbolic manifolds containing no lines.

Let Ibe a reduced complex space, let A = {z G C11 |z|< 1} be the unit

disk, and denote by Hoi (A, A) the set of holomorphic maps of A into X. If A

is a closed subset of X and Hoi (A,X - A) is dense in Hoi (A,A") in the

compact-open topology, then [2, p. 38] the restriction to X — A of the

Kobayashi pseudodistance on X is the Kobayashi pseudodistance on X - A

(i.e., dx(p,q) = dx_A(p,q) for p, q E X — A, where dx and dx_A are the

respective Kobayashi pseudodistances on X and X — A). We prove

Theorem 1. If X is a complex manifold and A is (closed, and contained in) a

closed analytic subset of X of codimension > 2, then Hoi (A, A" — A) is dense in

Hoi (A, X) in the compact-open topology, and hence the Kobayashi pseudodis-

tance on X restricts to that on X - A.

Before the proof, several comments are in order. Theorem 1 is a generaliza-

tion of results of [2], where the theorem is shown to hold if A" is a Stein

manifold or, more generally, infinitesimally homogeneous. The proof we give

uses this prior result and a result of Royden. Theorem 1 is best possible, in the

sense that examples [2, pp. 37, 38] show that the conclusion is false if

codimension A = 1 or if A" is singular. It is likely, however, that the

hypotheses on A can be weakened to: A closed, and of first category in a

nowhere-dense analytic subset of X. Furthermore, there is an obvious gener-

alization: if codim^ > k + 1, then Hoi (A*, A - A) is dense in Hoi (A*, A),

where A is the unit rc-dimensional polydisk. It can be proved by the same

methods.

Proof of the Theorem. Obviously, we may assume that A is a closed

analytic subset of X of codimension > 2. Let/ G Hol (A, A). We must show

that / can be approximated by maps of A into A - A. As a first step, let us

show that we may assume that / extends holomorphically past the boundary
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of the unit disk. Define /,: A -* X by ft(z) = f(tz), 0 < t < 1. Then each ft

extends past 9A and ft —> / in the compact-open topology as / —> 1. Thus, if

each/ is in the closure of Hoi (A, A -A), so is/. Assuming, then, that/has

an extension g: A' -» X, where A' is a disk of radius > 1, define G: A'

->A'xi by G(z) = (z,g(z)). Then G is an embedding. Since A is a

concentric subdisk of A' of strictly smaller radius, Lemma 3 of Royden's paper

[5] shows that there is a Stein open subset U of A' X X, such that G(A) C U.

Let A' = (A' X A) n t/. ^' is a closed analytic subset of U of codimension

> 2. Thus, the Stein manifold case of Theorem 1 shows that Hoi (A, U - A')

is dense in Hoi (A, U). Let tr denote the restriction to U of the projection of

A'XA" onto X. Since the spaces involved are locally compact, composition

with it is a continuous map tt^ : Hoi (A, U ) -» Hoi (A, X ), which sends

Hoi (A, U - A') to Hoi (A, A - A). Thus / = tt ° (G|A) is in the closure of

^(HoltA, U-A')) C Wol(AX-A).    D

As an application of Theorem 1 we will produce a new class of examples of

nonhyperbolic manifolds containing no lines. Recall that a complex manifold

X is said to contain no lines if every holomorphic map C -* X is constant.

Since dc = 0, and holomorphic maps do not increase pseudodistance, any

hyperbolic manifold contains no lines. Brody [1] has shown that the converse

is true for compact complex manifolds-that is, the hyperbolic ones are

precisely the ones containing no lines. There are, however, noncompact,

nonhyperbolic manifolds containing no lines; the first example was provided

by D. Eisenman and L. Taylor [4, p. 130]. Now, let Fd be the Fermât surface

of degree d in P3, given by the equation zß + zx + z2 + zd = 0. Fd is

nonsingular. For any permutation (i,j,k,l) of (0, 1,2,3) and choices of p and

v, such that pd = -1 = v , the line in P3 given by the equations z- = pz¡, zk

= vz¡ lies in F . Each of these finitely many lines is biholomorphic to P1. By

work of Mark Green [3, p. 70], for d > 8 any nonconstant map C —> Fd has

image lying in one of these lines. Let d > 8, and let F be a surface obtained

from F by deleting finitely many points, in such a way that at least three

points are removed from each of these lines. Since P with 3 or more points

removed is hyperbolic, F is a noncompact surface containing no lines. By

Theorem 1, the Kobayashi pseudodistance between any two points remaining

in one of these lines is still zero, so F is not hyperbolic. Similar examples can

be produced from any surface "containing only finitely many lines."
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