# SCALAR CURVATURES ON $O(M), G_{2}(M)$ 

ALCIBIADES RIGAS ${ }^{1}$


#### Abstract

We show that every $C^{\infty} f: G_{2}(M) \rightarrow \mathbf{R}, M^{n}$ a compact connected riemannian manifold $n \geqslant 3$, is the scalar curvature function of some complete riemannian metric on $G_{2}(M)$, the grassmann bundle of 2 planes over $M$, except possibly when $K=$ constant $\geqslant 0$. A similar result holds for $O(M)$ bundle of orthonormal frames on $M$.


This note is an application of Theorem A of [3] and O'Neill's formula for the curvature of a riemannian submersion [5], [4] and [1]. Theorem $C$ of [3] gives an affirmative answer to the question described in the abstract if $f(P)<0$ for at least one 2-plane section $P$ tangent to $M$.

Preliminaries. Let $\left(M^{n}, d s^{2}\right)$ be a compact riemannian manifold and let $O(M)$ be the principal $O(n)$ bundle of $d s^{2}$-orthonormal frames on $M$. Choose a connection of $\pi: O M \rightarrow M$.

We assume the setting of [1, Section 1]. (See also [4].) Briefly, let $\langle$,$\rangle be the$ bi-invariant metric on $O(n)$ defined via the positive definite $-B$ (killing form) on the lie algebra $\hat{G}$ of $O(n)$, and $\gamma$ the connection form for $\pi$. Split each $X \in T(O M)$ into horizontal and vertical components relative to $\gamma: X=X^{H}$ $\dot{+} X^{V}$. For $t>0, g_{t}=\pi^{*} d s^{2}+t^{2}\langle\gamma, \gamma\rangle$ is a family of $O(n)$-right invariant complete riemannian metrics on $P$ and relative to each one $\pi$ is a riemannian submersion on $\left(M, d s^{2}\right)$. Fix a $t>0$ and let $g \equiv g_{t}$. Let $U$ be open in $M$ and $X_{1}^{\prime}, \ldots, X_{n}^{\prime}$ be a $d s^{2}$-orthonormal (o.n. from now on) frame on $U$. Consider reductive decomposition of $\hat{G}=\hat{N} \dot{+} \hat{H}$, orthogonal relative to $-B$ where $\hat{H}$ is the lie algebra of $O(2) \times O(n-2)$, and $\hat{N}$ is the space of skew symmetric matrices of the form:

$$
\left(\begin{array}{ccc}
0 & 0 & -\xi^{t} \\
0 & 0 & -\eta^{t} \\
\xi & \eta & 0
\end{array}\right), \xi, \eta \text { column vectors in } R^{n-2}
$$

(see [2, vol. II, p. 280]).
Let $e_{1}^{r}, e_{2}^{s}, \quad r, s=1, \ldots, n-2$, be the obvious $(-B)$-o.n. basis of $\hat{N}$, where

[^0]${ }^{1}$ Research partially supported by an NSF grant.
$e_{1}^{r}$ is the matrix we obtain above if $\xi$ is the $r$ th standard basis element of $R^{n-2}$ and $\eta=0$. Similarly with $e_{2}^{s}$. Let $\hat{H}=\hat{H}_{1}+\hat{H}_{n-2}$ with $\hat{H}_{1}=\left\{\binom{0-r}{r}, r \in R\right\}$ the lie algebra of $O(2)$ and $\hat{H}_{n-2}$ the lie algebra of $O(n-2)$.

Let $X_{n+1}^{\prime}, \ldots, X_{3 n-4}^{\prime} ; X_{3 n-3}^{\prime} ; X_{3 n-2}^{\prime}, \ldots, X_{n+r}^{\prime}$ be notation for an o.n. basis of $\hat{N}+\hat{H}_{1}+\hat{H}_{2}$, where $r=\operatorname{dim} O(n)$. If $A \rightarrow A^{*}$ denotes the lie algebra monomorphism $\hat{G} \rightarrow \mathfrak{X}(O M)$, the vector fields of $O(M)$, determined by the free $O(n)$ action, we have that $X_{1}, \ldots, X_{n} ; t^{-1} X_{n+1}^{*}, \ldots, t^{-1} X_{n+r}^{*}$ form a local $g$-o.n. basis on $\pi^{-1}(U)$, where $X_{i}$ is the $\gamma$-horizontal lift of $X_{i}^{\prime}$.

Consider now the following

$$
\begin{array}{ccc}
O(M), & g \xrightarrow{p} & \frac{O(M)}{O(2) \times O(n-2)} \\
\pi \downarrow & & \downarrow q \\
M, d s^{2} & = & M, d s^{2}
\end{array}
$$

where $\hat{g}$ is the metric on $G_{2}(M)$ with respect to which $p$ is a riemannian submersion. Let $u \in \pi^{-1}(U) \subset O(M), p(u) \in G_{2}(M), x=\pi(u) \in M$. We want to calculate $S_{\hat{g}}(p(u))$ : the scalar curvature at $p(u)$ relative to $\hat{g}$.

A $\hat{g}$-o.n. frame at $p(u)$ is obtained by projecting a $g$-o.n., $p$-horizontal (i.e., normal to the $p$-fibre relative to $g$ ) frame at $u$ of $O(M)$. From $q p=\pi$ follows that $\operatorname{Horiz}(p)=\operatorname{Horiz}(\pi) \dot{+} \operatorname{span}\left\{X_{n+1}, \ldots, X_{3 n-4}\right\}, X_{n+s}=t^{-1} X_{n+s}^{*}$ (sum orthogonal rel $g$ ). From now on let $1 \leqslant \alpha, \beta \leqslant n+r, 3 n-3 \leqslant a \leqslant n+r$, $n+1 \leqslant b, \eta, \theta \leqslant n+r, n+1 \leqslant \lambda, \mu \leqslant 3 n-4,1 \leqslant i, j, k \leqslant n$.

Let $\hat{K}_{\alpha \beta} \equiv K_{\hat{g}}\left(p_{*}\left(X_{\alpha}\right), p_{*}\left(X_{\beta}\right)\right)$ where $X_{\alpha}$ is one of the $X_{i}^{\prime}$ 's or $t^{-1} X_{\lambda}^{* \prime}$ s and $K_{\hat{g}}$ is the sectional curvature relative to $\hat{g}$. By O'Neill's formula for the curvature of a riemannian submersion ([5], [4], [1]),

$$
\begin{equation*}
\bar{K}_{\alpha \beta}=K_{g}\left(X_{\alpha}, X_{\beta}\right)+\frac{3}{4}\left\|\left[X_{\alpha}, X_{\beta}\right]^{V}\right\|^{2} \tag{1}
\end{equation*}
$$

where $V$ stands for "vertical part" or " $g$-orthogonal projection onto the $p$ fibre" in any $T_{u}(O M)$. Notice that

$$
\begin{aligned}
{\left[X_{i}, X_{j}\right]^{V} } & =\sum_{a} g\left(\left[X_{i}, X_{j}\right], X_{a}\right) X_{a}=\sum_{a} t^{2}\left\langle\gamma\left[X_{i}, X_{j}\right], \gamma\left(X_{a}\right)\right\rangle X_{a} \\
& =\sum_{a}\left\langle\gamma\left[X_{i}, X_{j}\right], X_{a}^{\prime}\right\rangle X_{a}^{*} .
\end{aligned}
$$

If || \| is the length relative to $g$,

$$
\left\|\left[X_{i}, X_{j}\right]^{V}\right\|^{2}=t^{2} \sum_{a}\left\langle\gamma_{i j}, X_{a}^{\prime}\right\rangle^{2}
$$

where $\gamma_{i j}=\gamma\left[X_{i}, X_{j}\right] \in \hat{G}$.
Let $\left\langle\gamma_{i j}, X_{a}^{\prime}\right\rangle(u) \equiv 2 H_{i j}^{a}(u)$ and obtain

$$
\begin{equation*}
\bar{K}_{i j}=K_{i j}+3 t^{2} \sum_{a}\left(H_{i j}^{a}\right)^{2} \tag{2}
\end{equation*}
$$

Similarly, $\bar{K}_{i, \lambda} \equiv K_{\hat{g}}\left(p_{*} X_{i}, p_{*} X_{\lambda}\right)=K\left(X_{i}, X_{\lambda}\right)+\frac{3}{4}\left\|\left[X_{i}, X_{\lambda}\right]^{V}\right\|^{2}$. Here $X_{i}$ is $\pi-$
horizontal and $X_{\lambda}$ is a fundamental $p$-vertical. $\therefore\left[X_{i}, X_{\lambda}\right]$ is zero.

$$
\begin{equation*}
\bar{K}_{i \lambda}=K\left(X_{i}, X_{\lambda}\right) \tag{3}
\end{equation*}
$$

Now, $\bar{K}_{\lambda, \mu}=K\left(X_{\lambda}, X_{\mu}\right)+\frac{3}{4}\left\|\left[X_{\lambda}, X_{\mu}\right]^{V}\right\|^{2}$. Recall that $X_{\lambda}=t^{-1} X_{\lambda}^{*}$ and the basis $X_{\lambda}^{\prime}$ was exactly the $e_{1}^{r}$ 's and $e_{2}^{s,}$ s above. It is $\left[e_{1}^{r}, e_{1}^{s}\right]=\left[e_{2}^{r}, e_{2}^{s}\right]=0$ and

$$
\left[e_{1}^{r}, e_{2}^{s}\right]=\delta_{r s}\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad \begin{array}{l}
0
\end{array}\right) \quad \text { in } \hat{H}_{1} \subset \hat{G} .
$$

If $-B$ is so normalized as to have $e_{1}^{r}, e_{2}^{s}$ of length one then $\left[e_{1}^{r}, e_{2}^{s}\right]$ is also of length 1 .

$$
\left[X_{\lambda}, X_{\mu}\right]=\left[t^{-1} X_{\lambda}^{*}, t^{-1} X_{\mu}^{*}\right]=t^{-2}\left[X_{\lambda}^{*}, X_{\mu}^{*}\right]
$$

From the above discussion $\left\|\left[X_{\lambda}, X_{\mu}\right]^{V}\right\|^{2}=\left(t^{-2}\right)^{2} t^{2} 1$ or it is zero depending on $\lambda, \mu$. The number of nonzero ones is $n-2$.

From this and (2), (3) we have:

$$
\begin{align*}
\sum_{\alpha, \beta} \bar{K}_{\alpha, \beta}= & \sum_{i<j} \bar{K}_{i j}+\sum_{i, \lambda} \bar{K}_{i \lambda}+\sum_{\lambda<\mu} \bar{K}_{\lambda, \mu} \\
= & \sum_{i<j}\left\{K_{i j}+3 t^{2} \sum_{a}\left(H_{i j}^{a}\right)^{2}\right\}+\sum_{i, \lambda} K_{i \lambda}  \tag{4}\\
& +\sum_{\lambda<\mu} K_{\lambda \mu}+\frac{3}{4} t^{-2}(n-2)
\end{align*}
$$

Now from O'Neill's theorem [5] on the submersion $\pi$ one can express $K_{i j}, K_{i \lambda}, K_{\lambda \mu}$ relative to the curvature of $M$ and the $\pi$-fibre $O(n)$.

$$
K_{i j} \equiv K\left(X_{i}, X_{j}\right)=K_{d s^{2}}\left(X_{i}^{\prime}, X_{j}^{\prime}\right)-\frac{3}{4}\left\|\left[X_{i}, X_{j}\right]^{W}\right\|^{2}
$$

where $W$ denotes the vertical component relative to the $\pi$-fibre:

$$
\begin{align*}
{\left[X_{i}, X_{j}\right]^{W} } & =\sum_{b} g\left(\left[X_{i}, X_{j}\right], X_{b}\right) X_{b} \\
& =\sum_{b}\left\langle\gamma\left[X_{i}, X_{j}\right], X_{b}^{\prime}\right\rangle X_{b}^{*}=2 \sum_{b} H_{i j}^{b} X_{b}^{*}, \\
\left\|\left[X_{i}, X_{j}\right]^{W}\right\|^{2} & =4 t^{2} \sum_{b}\left(H_{i j}^{b}\right)^{2}, \quad\left(H_{i j}^{b} \equiv H_{i j}^{b}(u)\right) . \\
K_{i j} & =K_{d s^{2}}\left(X_{i}^{\prime}, X_{j}^{\prime}\right)-3 t^{2} \sum_{b}\left(H_{i j}^{b}\right)^{2} . \tag{5}
\end{align*}
$$

$K_{i \lambda}=t^{2}\left\|\left(\nabla_{X_{i}} X_{\lambda}\right)^{\text {hor }}\right\|^{2}$ ([5], [4]) where $\nabla$ is the riemannian connection corresponding to $g$, and hor stands for $\pi$-horizontal component. It is easy to see from [5, Lemma 2, p. 446] or [4], that

$$
\begin{align*}
\left\|\left(\nabla_{X_{i}} X_{\lambda}\right)^{\mathrm{hor}}\right\|^{2} & =\sum_{j} \frac{1}{2} g\left(\left[X_{i}, X_{j}\right], X_{\lambda}\right)^{2} \\
& =\frac{1}{4} \sum_{j}\left(2 H_{i j}^{\lambda}\right)^{2}  \tag{6}\\
K_{i \lambda} & =t^{2} \sum_{j}\left(H_{i j}^{\lambda}\right)^{2}
\end{align*}
$$

Note. This is the same result as in Proposition 5 of [1] where $K_{i \lambda}$ $\equiv R_{i \lambda i \lambda} \cdot K_{\lambda \mu}=K\left(X_{\lambda}, X_{\mu}\right)$ and it must be the curvature of the same section considered as tangent to the totally geodesic $\pi$-fibre, i.e.,

$$
K_{\lambda \mu}=\frac{1}{4} t^{-2}\left\|\left[X_{\lambda}^{*}, X_{\mu}^{*}\right]\right\|^{2}
$$

where $\|\|$ is the original $O(n)$ norm. (This agrees with Proposition 5 of [1]:

$$
K_{\lambda \mu}=R_{\lambda \mu \lambda \mu}=\frac{1}{4} t^{-2} \sum_{f}\left(C_{\mu f}^{\lambda}\right)^{2}
$$

where $C_{s t}^{r}=\left\langle\left[X_{s}, X_{t}\right], X_{r}\right\rangle=C_{r t}^{s}$, etc.) But $\left\|\left[X_{\lambda}^{*}, X_{\mu}^{*}\right]\right\|=1$ or 0 as above and there are exactly $(n-2)$ combinations $(\lambda<\mu)$ that give us 1:

$$
\begin{equation*}
\sum_{\lambda<\mu} K_{\lambda \mu}=\frac{1}{4} t^{-2}(n-2) . \tag{7}
\end{equation*}
$$

From (4), (5), (6), (7) we have:

$$
\begin{aligned}
\sum_{\alpha, \beta} \bar{K}_{\alpha \beta}= & \sum_{i<j} K_{d s^{2}}\left(X_{i}^{\prime}, X_{j}^{\prime}\right)-\sum_{i<j} 3 t^{2} \sum_{b}\left(H_{i j}^{b}\right)^{2} \\
& +\sum_{i<j} 3 t^{2} \sum_{a}\left(H_{i j}^{a}\right)^{2}+\sum_{i, \lambda} t^{2} \sum_{j}\left(H_{i j}^{\lambda}\right)^{2} \\
& +\frac{1}{4} t^{-2}(n-2)+\frac{3}{4} t^{-2}(n-2)
\end{aligned}
$$

Therefore,

$$
S_{\hat{g}}(p(u))=S_{d s^{2}}(\pi(u))-2 t^{2} \sum_{\lambda} \sum_{i<j}\left(H_{i j}^{\lambda}(u)\right)^{2}+t^{-2}(n-2)
$$

after collecting terms and observing the ranges of the indices $a, b$, and $\lambda$. ( $S_{d s^{2}}(\pi(u))$ is the scalar curvature of $d s^{2}$ on $M$ at $\pi(u)$.)

$$
\Lambda(U) \equiv 2 \sum_{\lambda} \sum_{i<j}\left(H_{i j}^{\lambda}(u)\right)^{2} \geqslant 0 \quad \text { for all } u \in \pi^{-1}(U)
$$

Let $S$ be the notation for the scalar curvature of $d s^{2}$ on $M, S: M \rightarrow R$ and $\Lambda: O(M) \rightarrow R$ but it factors through $M$ by the $O(n)$-invariance of $g$. So, instead of $\Lambda(u)$ we write $\Lambda(x), x=\pi(u)$.

We proved:
Proposition. The scalar curvature of $\hat{g}$ at $p(u)$ is equal to $S(x)-t^{2} \Lambda(x)$ $+t^{-2}(n-2)$ where $x=\pi(u)$, and $\Lambda(x) \geqslant 0$.

Theorem. $A C^{\infty}$ function $f: G_{2}(M) \rightarrow R$ is a scalar curvature function for some riemannian metric on $G_{2}(M)$ except perhaps when it is a nonnegative constant.

The proof of this theorem is an application of
Theorem A ([3]). Let $(N, g)$ be a smooth compact riemannian manifold with gaussian (resp. scalar if $\operatorname{dim} N \geqslant 3$ ) curvature $S$ and let $f \in C^{\infty}(N)$. If there is a constant $c>0$ such that

$$
\min c f<S(x)<\max c f
$$

for all $x \in N$, then there is a smooth metric $g_{1}$ on $N$ with gaussian (resp. scalar) curvature $f$.

Recall that $2 H_{i j}^{\lambda}=\left\langle\gamma\left[X_{i}, X_{j}\right], X_{\lambda}^{\prime}\right\rangle$ and $X_{i}, X_{j}$ are $\gamma$-horizontal vectors in $T(O M)$ of unit length relative to $g \equiv g_{t}$ and therefore of unit length relative to every $g_{t}, t>0$. The length of $\gamma\left[X_{i}, X_{j}\right]$ in $\hat{G}$ is bounded independent of $t$, i.e., $0 \leqslant \Lambda_{m} \leqslant \Lambda(x) \leqslant \Lambda_{M}$ for all $x \in M$ with $\Lambda_{m}, \Lambda_{M}$ constants independent of $t$.

Since $S(x)$ is bounded, it follows that $\hat{S}_{m}(t) / \hat{S}_{M}(t) \rightarrow 1$ as $t \rightarrow 0$, where $\hat{S}_{m}(t)$ and $\hat{S}_{M}(t)$ are the maximum and minimum of the scalar curvature of $\hat{g}_{t}$, and the proof is complete.

Special case. If $f=$ constant $>0$ is the sectional curvature of $\left(M, d s^{2}\right)$ then $M=S^{n} / \Gamma, \Gamma \subset O(n+1)$ and $O(M)=O(n+1) / \Gamma$, where $\Gamma$ is a finite subgroup of $O(n+1)$ [6, p. 69]. If $M$ is 1 -connected, $M=S^{n}$ of radius $f^{-1 / 2}$ and therefore $G_{2}(M)=O(n+1) / O(2) \times O(n-2)$, which admits a constant scalar curvature function as a homogeneous space of $O(n+1)$. Any $C^{\infty}$ function from $G_{2}(M) \rightarrow R$ will then be a scalar curvature for some riemannian metric on $G_{2}(M)$, by Theorem C of [3].

The following is proved exactly the same way as the above theorem.
Proposition. $A C^{\infty} f: O(M) \rightarrow R$ is a scalar curvature function for some riemannian metric on $O(M)$, except perhaps when $f=$ constant $\geqslant 0$.

Proof. Using the same notation conventions,

$$
\begin{aligned}
& K_{i j}=K_{d s^{2}}\left(X_{i}^{\prime}, X_{j}^{\prime}\right)-3 t^{2} \sum_{\eta}\left(H_{i j}^{\eta}\right)^{2} \\
& K_{i \theta}=t^{2} \sum_{j}\left(H_{i j}^{\theta}\right)^{2} \\
& K_{\eta \theta}=\frac{1}{4} t^{-2}\left\langle\left[X_{\eta}^{*}, X_{\theta}^{*}\right],\left[X_{\eta}^{*}, X_{\theta}^{*}\right]\right\rangle=t^{-2} K_{0}\left(X_{\eta}^{\prime}, X_{\theta}^{\prime}\right)
\end{aligned}
$$

where $K_{0}$ is the sectional curvature of the fibre $O(n)$ in its original metric $\langle$,$\rangle .$ Therefore, $S_{g}(u)=S(x)-t^{2} \Lambda_{1}(u)+t^{-2} c$ where $S_{g}(u)$ is the scalar curvature of $O(M)$ relative to the metric $g \equiv g_{t}$ at $u$,

$$
\Lambda_{1}(u)=2 \sum_{i<j} \sum_{\eta}\left(H_{i j}^{\eta}(u)\right)^{2} \geqslant 0
$$

bounded independent of $t$ and $c$ is the constant positive scalar curvature of ( $O(m),\langle\rangle$,$) .$

If $0 \leqslant f_{m}<f_{M}$ by the exact same procedure as in the theorem we obtain that $f$ is a scalar curvature on $O(M)$.

In the particular case that $f$ is $K \circ p$ with $K$ the constant positive curvature of $M$, then $M=S^{n} / \Gamma$ and $O(M)=O(n+1) / \Gamma$ is a homogeneous space of a compact lie group that admits a metric with positive constant scalar curvature. By Theorem C of [3], all $C^{\infty}$ functions on $O(M)$ are scalar curvatures and in particular $f$.

## References

1. G. Jensen, Einstein metrics on principal fibre bundles, J. Differential Geometry 8 (1973), 599-614. MR 50 \# 5694.
2. S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. II, Interscience, New York, 1969. MR 38 \#6501.
3. J. Kazdan and F. Warner, A direct approach to the determination of gaussian and scalar curvature functions, Invent. Math. 28 (1975), 227-230.
4. H. B. Lawson and S. T. Yau, Scalar curvature, non-abelian group actions, and the degree of symmetry of exotic spheres, Comment. Math. Helv. 49 (1974), 232-244. MR 50 \# 11300.
5. B. O. O'Neill, The fundamental equations of a submersion Michigan Math. J. 13 (1966), 459-469. MR 34 \# 751.
6. J. Wolf, Spaces of constant curvature, 3rd ed., Publish or Perish, Cambridge, Mass., 1974.

Department of Mathematics, University of Western Ontario, London, Ontario, CanaDA

Current address: IMECC, UNICAMP, Campinas, S.P., Brazil


[^0]:    Received by the editors December 29, 1975.
    AMS (MOS) subject classifications (1970). Primary 53C20; Secondary 55F10.
    Key words and phrases. Riemannian metric, bundle of orthonormal frames, scalar and sectional curvature, grassmann 2-plane bundle.

