SCALAR CURVATURES ON O(M), $G_2(M)$

ALCIBIADES RIGAS¹

ABSTRACT. We show that every C^{∞} $f: G_2(M) \to \mathbb{R}$, M^n a compact connected riemannian manifold $n \ge 3$, is the scalar curvature function of some complete riemannian metric on $G_2(M)$, the grassmann bundle of 2 planes over M, except possibly when $K = \text{constant} \ge 0$. A similar result holds for O(M) bundle of orthonormal frames on M.

This note is an application of Theorem A of [3] and O'Neill's formula for the curvature of a riemannian submersion [5], [4] and [1]. Theorem C of [3] gives an affirmative answer to the question described in the abstract if f(P) < 0 for at least one 2-plane section P tangent to M.

Preliminaries. Let (M^n, ds^2) be a compact riemannian manifold and let O(M) be the principal O(n) bundle of ds^2 -orthonormal frames on M. Choose a connection of $\pi: OM \to M$.

We assume the setting of [1, Section 1]. (See also [4].) Briefly, let \langle , \rangle be the bi-invariant metric on O(n) defined via the positive definite -B (killing form) on the lie algebra \hat{G} of O(n), and γ the connection form for π . Split each $X \in T(OM)$ into horizontal and vertical components relative to γ : $X = X^H + X^V$. For t > 0, $g_t = \pi^* ds^2 + t^2 \langle \gamma, \gamma \rangle$ is a family of O(n)-right invariant complete riemannian metrics on P and relative to each one π is a riemannian submersion on (M, ds^2) . Fix a t > 0 and let $g = g_t$. Let U be open in M and X'_1, \ldots, X'_n be a ds^2 -orthonormal (o.n. from now on) frame on U. Consider reductive decomposition of $\hat{G} = \hat{N} + \hat{H}$, orthogonal relative to -B where \hat{H} is the lie algebra of $O(2) \times O(n-2)$, and \hat{N} is the space of skew symmetric matrices of the form:

$$\begin{pmatrix} 0 & 0 & -\xi^{t} \\ 0 & 0 & -\eta^{t} \\ \xi & \eta & 0 \end{pmatrix}, \quad \xi, \quad \eta \text{ column vectors in } R^{n-2},$$

(see [2, vol. II, p. 280]).

Let e_1^r , e_2^s , r, $s = 1, \ldots, n-2$, be the obvious (-B)-o.n. basis of \hat{N} , where

Received by the editors December 29, 1975.

AMS (MOS) subject classifications (1970). Primary 53C20; Secondary 55F10.

Key words and phrases. Riemannian metric, bundle of orthonormal frames, scalar and sectional curvature, grassmann 2-plane bundle.

¹ Research partially supported by an NSF grant.

 e_1^r is the matrix we obtain above if ξ is the rth standard basis element of R^{n-2} and $\eta=0$. Similarly with e_2^s . Let $\hat{H}=\hat{H}_1\dotplus\hat{H}_{n-2}$ with $\hat{H}_1=\{(\begin{smallmatrix}0&-r\\r&0\end{smallmatrix}),r\in R\}$ the lie algebra of O(2) and \hat{H}_{n-2} the lie algebra of O(n-2).

Let $X'_{n+1}, \ldots, X'_{3n-4}; X'_{3n-3}; X'_{3n-2}, \ldots, X'_{n+r}$ be notation for an o.n. basis of $\hat{N} \dotplus \hat{H}_1 \dotplus \hat{H}_2$, where $r = \dim O(n)$. If $A \to A^*$ denotes the lie algebra monomorphism $\hat{G} \to \mathfrak{X}(OM)$, the vector fields of O(M), determined by the free O(n) action, we have that X_1, \ldots, X_n ; $t^{-1}X^*_{n+1}, \ldots, t^{-1}X^*_{n+r}$ form a local g-o.n. basis on $\pi^{-1}(U)$, where X_i is the γ -horizontal lift of X'_i .

Consider now the following

$$O(M), g \xrightarrow{p} \frac{O(M)}{O(2) \times O(n-2)} \equiv G_2(M), \hat{g}$$

$$\pi \downarrow \qquad \qquad \downarrow q$$

$$M, ds^2 = M, ds^2$$

where \hat{g} is the metric on $G_2(M)$ with respect to which p is a riemannian submersion. Let $u \in \pi^{-1}(U) \subset O(M)$, $p(u) \in G_2(M)$, $x = \pi(u) \in M$. We want to calculate $S_{\hat{g}}(p(u))$: the scalar curvature at p(u) relative to \hat{g} .

A \hat{g} -o.n. frame at p(u) is obtained by projecting a g-o.n., p-horizontal (i.e., normal to the p-fibre relative to g) frame at u of O(M). From $qp = \pi$ follows that Horiz $(p) = \text{Horiz } (\pi) \dotplus \text{span } \{X_{n+1}, \ldots, X_{3n-4}\}, X_{n+s} = t^{-1}X_{n+s}^*$ (sum orthogonal rel g). From now on let $1 \le \alpha$, $\beta \le n+r$, $3n-3 \le a \le n+r$, $n+1 \le b$, η , $\theta \le n+r$, $n+1 \le \lambda$, $\mu \le 3n-4$, $1 \le i,j,k \le n$.

Let $\hat{K}_{\alpha\beta} \equiv K_{\hat{g}}(p_*(X_{\alpha}), p_*(X_{\beta}))$ where X_{α} is one of the X_i 's or $t^{-1}X_{\lambda}^*$'s and $K_{\hat{g}}$ is the sectional curvature relative to \hat{g} . By O'Neill's formula for the curvature of a riemannian submersion ([5], [4], [1]),

(1)
$$\overline{K}_{\alpha\beta} = K_g(X_\alpha, X_\beta) + \frac{3}{4} \| [X_\alpha, X_\beta]^V \|^2,$$

where V stands for "vertical part" or "g-orthogonal projection onto the p-fibre" in any $T_u(OM)$. Notice that

$$\begin{split} \left[X_{i}, X_{j}\right]^{V} &= \sum_{a} g([X_{i}, X_{j}], X_{a}) X_{a} = \sum_{a} t^{2} \langle \gamma[X_{i}, X_{j}], \gamma(X_{a}) \rangle X_{a} \\ &= \sum_{a} \langle \gamma[X_{i}, X_{j}], X'_{a} \rangle X_{a}^{*}. \end{split}$$

If $\| \|$ is the length relative to g,

$$||[X_i, X_j]^V||^2 = t^2 \sum_a \langle \gamma_{ij}, X_a' \rangle^2,$$

where $\gamma_{ij} = \gamma[X_i, X_j] \in \hat{G}$. Let $\langle \gamma_{ij}, X'_a \rangle (u) \equiv 2H^a_{ij}(u)$ and obtain

(2)
$$\overline{K}_{ij} = K_{ij} + 3t^2 \sum_{a} (H_{ij}^a)^2$$

Similarly, $\overline{K}_{i,\lambda} \equiv K_g(p_*X_i, p_*X_\lambda) = K(X_i, X_\lambda) + \frac{3}{4} ||[X_i, X_\lambda]^V||^2$. Here X_i is π -

horizontal and X_{λ} is a fundamental p-vertical. $\therefore [X_i, X_{\lambda}]$ is zero.

$$\overline{K}_{i\lambda} = K(X_i, X_{\lambda}).$$

Now, $\overline{K}_{\lambda,\mu} = K(X_{\lambda}, X_{\mu}) + \frac{3}{4} ||[X_{\lambda}, X_{\mu}]^{V}||^{2}$. Recall that $X_{\lambda} = t^{-1} X_{\lambda}^{*}$ and the basis X'_{λ} was exactly the e'_{1} 's and e'_{2} 's above. It is $[e'_{1}, e'_{1}] = [e'_{2}, e'_{2}] = 0$ and

$$[e_1^r, e_2^s] = \delta_{rs} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad \text{in } \hat{H}_1 \subset \hat{G}.$$

If -B is so normalized as to have e_1^r , e_2^s of length one then $[e_1^r, e_2^s]$ is also of length 1.

$$[X_{\lambda}, X_{\mu}] = [t^{-1}X_{\lambda}^{*}, t^{-1}X_{\mu}^{*}] = t^{-2}[X_{\lambda}^{*}, X_{\mu}^{*}].$$

From the above discussion $\|[X_{\lambda}, X_{\mu}]^{V}\|^{2} = (t^{-2})^{2} t^{2} 1$ or it is zero depending on λ , μ . The number of nonzero ones is n-2.

From this and (2), (3) we have:

(4)
$$\sum_{\alpha,\beta} \overline{K}_{\alpha,\beta} = \sum_{i < j} \overline{K}_{ij} + \sum_{i,\lambda} \overline{K}_{i\lambda} + \sum_{\lambda < \mu} \overline{K}_{\lambda,\mu}$$

$$= \sum_{i < j} \left\{ K_{ij} + 3t^2 \sum_{a} (H_{ij}^a)^2 \right\} + \sum_{i,\lambda} K_{i\lambda}$$

$$+ \sum_{\lambda < \mu} K_{\lambda\mu} + \frac{3}{4} t^{-2} (n-2).$$

Now from O'Neill's theorem [5] on the submersion π one can express K_{ij} , $K_{i\lambda}$, $K_{\lambda\mu}$ relative to the curvature of M and the π -fibre O(n).

$$K_{ij} \equiv K(X_i, X_j) = K_{ds^2}(X'_i, X'_j) - \frac{3}{4} ||[X_i, X_j]^W||^2$$

where W denotes the vertical component relative to the π -fibre:

$$[X_{i}, X_{j}]^{W} = \sum_{b} g([X_{i}, X_{j}], X_{b}) X_{b}$$

$$= \sum_{b} \langle \gamma[X_{i}, X_{j}], X'_{b} \rangle X_{b}^{*} = 2 \sum_{b} H_{ij}^{b} X_{b}^{*},$$

$$\|[X_{i}, X_{j}]^{W}\|^{2} = 4t^{2} \sum_{b} (H_{ij}^{b})^{2}, \qquad (H_{ij}^{b} \equiv H_{ij}^{b}(u)).$$

$$(5) \qquad K_{ij} = K_{ds^{2}}(X'_{i}, X'_{j}) - 3t^{2} \sum_{b} (H_{ij}^{b})^{2}.$$

 $K_{i\lambda} = t^2 \| (\nabla_{X_i} X_{\lambda})^{\text{hor}} \|^2$ ([5], [4]) where ∇ is the riemannian connection corresponding to g, and hor stands for π -horizontal component. It is easy to see from [5, Lemma 2, p. 446] or [4], that

(6)
$$\|(\nabla_{X_i} X_{\lambda})^{\text{hor}}\|^2 = \sum_{j} \frac{1}{2} g([X_i, X_j], X_{\lambda})^2$$
$$= \frac{1}{4} \sum_{j} (2H_{ij}^{\lambda})^2,$$
$$K_{i\lambda} = t^2 \sum_{j} (H_{ij}^{\lambda})^2.$$

Note. This is the same result as in Proposition 5 of [1] where $K_{i\lambda} \equiv R_{i\lambda i\lambda}$. $K_{\lambda\mu} = K(X_{\lambda}, X_{\mu})$ and it must be the curvature of the same section considered as tangent to the totally geodesic π -fibre, i.e.,

$$K_{\lambda\mu} = \frac{1}{4}t^{-2}\|[X_{\lambda}^*, X_{\mu}^*]\|^2$$

where $\| \|$ is the original O(n) norm. (This agrees with Proposition 5 of [1]:

$$K_{\lambda\mu} = R_{\lambda\mu\lambda\mu} = \frac{1}{4}t^{-2}\sum_{f}\left(C_{\mu f}^{\lambda}\right)^{2},$$

where $C_{st}^r = \langle [X_s, X_t], X_r \rangle = C_{rt}^s$, etc.) But $||[X_{\lambda}^*, X_{\mu}^*]|| = 1$ or 0 as above and there are exactly (n-2) combinations $(\lambda < \mu)$ that give us 1:

(7)
$$\sum_{\lambda \le \mu} K_{\lambda \mu} = \frac{1}{4} t^{-2} (n-2).$$

From (4), (5), (6), (7) we have:

$$\begin{split} \sum_{\alpha,\beta} \overline{K}_{\alpha\beta} &= \sum_{i < j} K_{ds^2}(X'_i, X'_j) - \sum_{i < j} 3t^2 \sum_b (H^b_{ij})^2 \\ &+ \sum_{i < j} 3t^2 \sum_a (H^a_{ij})^2 + \sum_{i,\lambda} t^2 \sum_j (H^{\lambda}_{ij})^2 \\ &+ \frac{1}{4} t^{-2} (n-2) + \frac{3}{4} t^{-2} (n-2). \end{split}$$

Therefore,

$$S_{\hat{g}}(p(u)) = S_{ds^2}(\pi(u)) - 2t^2 \sum_{\lambda} \sum_{i \le j} (H_{ij}^{\lambda}(u))^2 + t^{-2}(n-2)$$

after collecting terms and observing the ranges of the indices a, b, and λ . $(S_{ds^2}(\pi(u)))$ is the scalar curvature of ds^2 on M at $\pi(u)$.)

$$\Lambda(U) \equiv 2 \sum_{\lambda} \sum_{i < j} (H_{ij}^{\lambda}(u))^2 \geqslant 0 \text{ for all } u \in \pi^{-1}(U).$$

Let S be the notation for the scalar curvature of ds^2 on M, S: $M \to R$ and $\Lambda: O(M) \to R$ but it factors through M by the O(n)-invariance of g. So, instead of $\Lambda(u)$ we write $\Lambda(x)$, $x = \pi(u)$.

We proved:

PROPOSITION. The scalar curvature of \hat{g} at p(u) is equal to $S(x) - t^2 \Lambda(x) + t^{-2}(n-2)$ where $x = \pi(u)$, and $\Lambda(x) \ge 0$.

THEOREM. A C^{∞} function $f: G_2(M) \to R$ is a scalar curvature function for some riemannian metric on $G_2(M)$ except perhaps when it is a nonnegative constant.

The proof of this theorem is an application of

THEOREM A ([3]). Let (N, g) be a smooth compact riemannian manifold with gaussian (resp. scalar if dim $N \ge 3$) curvature S and let $f \in C^{\infty}(N)$. If there is a constant c > 0 such that

$$\min cf < S(x) < \max cf$$

for all $x \in N$, then there is a smooth metric g_1 on N with gaussian (resp. scalar) curvature f.

Recall that $2H_{ij}^{\lambda} = \langle \gamma[X_i, X_j], X_{\lambda}' \rangle$ and X_i , X_j are γ -horizontal vectors in T(OM) of unit length relative to $g \equiv g_t$ and therefore of unit length relative to every g_t , t > 0. The length of $\gamma[X_i, X_j]$ in \hat{G} is bounded independent of t, i.e., $0 \leq \Lambda_m \leq \Lambda(x) \leq \Lambda_M$ for all $x \in M$ with Λ_m , Λ_M constants independent of t.

Since S(x) is bounded, it follows that $\hat{S}_m(t)/\hat{S}_M(t) \to 1$ as $t \to 0$, where $\hat{S}_m(t)$ and $\hat{S}_M(t)$ are the maximum and minimum of the scalar curvature of \hat{g}_t , and the proof is complete.

Special case. If f = constant > 0 is the sectional curvature of (M, ds^2) then $M = S^n/\Gamma$, $\Gamma \subset O(n+1)$ and $O(M) = O(n+1)/\Gamma$, where Γ is a finite subgroup of O(n+1) [6, p. 69]. If M is 1-connected, $M = S^n$ of radius $f^{-1/2}$ and therefore $G_2(M) = O(n+1)/O(2) \times O(n-2)$, which admits a constant scalar curvature function as a homogeneous space of O(n+1). Any C^∞ function from $G_2(M) \to R$ will then be a scalar curvature for some riemannian metric on $G_2(M)$, by Theorem C of [3].

The following is proved exactly the same way as the above theorem.

PROPOSITION. A C^{∞} f: $O(M) \to R$ is a scalar curvature function for some riemannian metric on O(M), except perhaps when $f = constant \ge 0$.

PROOF. Using the same notation conventions,

$$K_{ij} = K_{ds^{2}}(X'_{i}, X'_{j}) - 3t^{2} \sum_{\eta} (H_{ij}^{\eta})^{2},$$

$$K_{i\theta} = t^{2} \sum_{j} (H_{ij}^{\theta})^{2},$$

$$K_{\eta\theta} = \frac{1}{4}t^{-2} \langle [X_{\eta}^{*}, X_{\theta}^{*}], [X_{\eta}^{*}, X_{\theta}^{*}] \rangle = t^{-2} K_{0}(X'_{\eta}, X'_{\theta})$$

where K_0 is the sectional curvature of the fibre O(n) in its original metric \langle , \rangle . Therefore, $S_g(u) = S(x) - t^2 \Lambda_1(u) + t^{-2}c$ where $S_g(u)$ is the scalar curvature of O(M) relative to the metric $g \equiv g_t$ at u,

$$\Lambda_{1}(u) = 2 \sum_{i \leq j} \sum_{n} (H_{ij}^{\eta}(u))^{2} \geqslant 0$$

bounded independent of t and c is the constant positive scalar curvature of $(O(m), \langle , \rangle)$.

If $0 \le f_m < f_M$ by the exact same procedure as in the theorem we obtain that f is a scalar curvature on O(M).

In the particular case that f is $K \circ p$ with K the constant positive curvature of M, then $M = S^n/\Gamma$ and $O(M) = O(n+1)/\Gamma$ is a homogeneous space of a compact lie group that admits a metric with positive constant scalar curvature. By Theorem C of [3], all C^{∞} functions on O(M) are scalar curvatures and in particular f.

REFERENCES

- 1. G. Jensen, Einstein metrics on principal fibre bundles, J. Differential Geometry 8 (1973), 599-614. MR 50 #5694.
- 2. S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. II, Interscience, New York, 1969. MR 38 #6501.
- 3. J. Kazdan and F. Warner, A direct approach to the determination of gaussian and scalar curvature functions, Invent. Math. 28 (1975), 227-230.
- 4. H. B. Lawson and S. T. Yau, Scalar curvature, non-abelian group actions, and the degree of symmetry of exotic spheres, Comment. Math. Helv. 49 (1974), 232-244. MR 50 #11300.
- 5. B. O. O'Neill, The fundamental equations of a submersion Michigan Math. J. 13 (1966), 459-469. MR 34 #751.
 - 6. J. Wolf, Spaces of constant curvature, 3rd ed., Publish or Perish, Cambridge, Mass., 1974.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WESTERN ONTARIO, LONDON, ONTARIO, CANADA

Current address: IMECC, UNICAMP, Campinas, S.P., Brazil