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SCALAR CURVATURES ON 0{M), G2{M)

ALCIBIADES RIGAS1

Abstract. We show that every C00/: G2(M) -► R, M" a compact con-

nected riemannian manifold n > 3, is the scalar curvature function of some

complete riemannian metric on G2(M), the grassmann bundle of 2 planes

over M, except possibly when K = constant > 0. A similar result holds for

0(M) bundle of orthonormal frames on M.

This note is an application of Theorem A of [3] and O'Neill's formula for

the curvature of a riemannian submersion [5], [4] and [1]. Theorem C of [3]

gives an affirmative answer to the question described in the abstract if

f(P) < 0 for at least one 2-plane section P tangent to M.

Preliminaries. Let (Mn,ds2) be a compact riemannian manifold and let

0(M) be the principal 0(n) bundle of ds -orthonormal frames on M. Choose

a connection of it: OM —> M.

We assume the setting of [1, Section 1]. (See also [4].) Briefly, let <, > be the

bi-invariant metric on 0(n) defined via the positive definite - B (killing form)

on the lie algebra G of 0(n), and y the connection form for it. Split each

X E T(OM) into horizontal and vertical components relative to y: X = XH

+ Xv. For t > 0, gt = tr*ds + t <y, y) is a family of 0(«)-right invariant

complete riemannian metrics on P and relative to each one -tt is a riemannian

submersion on (M, ds2). Fix a t > 0 and let g = gt. Let U be open in M and

X\, ..., X'n be a ds -orthonormal (o.n. from now on) frame on U. Consider

reductive decomposition of G = N + 77, orthogonal relative to —B where 77

is the lie algebra of 0(2) X 0(n — 2), and N is the space of skew symmetric

matrices of the form:

/o  o        -S'\
I 0   0 — tj' j,  £, t) column vectors in 7?"    ,

V   1 0/
(see [2, vol. II, p. 280]).

Let e[, e2,   r, s = 1, ..., n — 2, be the obvious (—7?)-o.n. basis of N, where
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e[ is the matrix we obtain above if £ is the rth standard basis element of A"-2

and tj = 0. Similarly with e2. Let H = Hx + An_2 with Hx = {(°r~0r),r G R)

the lie algebra of 0(2) and Hn_2 the lie algebra of 0(n — 2).

Let X'n+X, ..., X'3n_4; X'3n_3; X'3n_2, ..., X'n+r be notation for an o.n.

basis of A + Hx + H2, where r = dim 0(n). If A -» A* denotes the lie algebra

monomorphism G -» £(OM), the vector fields of O(M), determined by the

free 0(n) action, we have that Xx, ... ,Xn; t X*+x, ..., t~x X*+r form a local

g-o.n. basis on tr~ (U), where Xj is the y-horizontal lift of X\.

Consider now the following

<**).   **    0(2)l{0(n-2)     =°2iMU
n 4 i Q

M, ds2      = M, ds2

where g is the metric on G2(M) with respect to which p is a riemannian

submersion. Let u G tr~x(U) C 0(M),p(u) G G2(M),x = tt(u) G M. We

want to calculate SAp(u)): the scalar curvature at p(u) relative to g.

A g-o.n. frame at p(u) is obtained by projecting a g-o.n., ^-horizontal (i.e.,

normal to the /?-fibre relative to g) frame at u of 0(M). From qp = tt follows

that Horiz (p) = Horiz (tt) 4- span {Xn+X,... ,X3n_4), Xn+S = t~xX*+s (sum

orthogonal relg). From now on let 1 < a, B < n + r, 2m — 3 < a < « + r,

n + 1 < fe, rj, # < n + r, n + 1 < X, /x < 3n — 4, 1 < /,/, /c < n.

Let A:a/? = ^^(^(A;),/)^^)) where Xa is one of the X/s or r'xf's and

A- is the sectional curvature relative to g. By O'Neill's formula for the

curvature of a riemannian submersion ([5], [4], [1]),

(1) Kb = Kg(Xa,Xp) + l\\[Xa,Xpf\\2,

where V stands for "vertical part" or "g-orthogonal projection onto the p-

fibre" in any Tu(OM). Notice that

[Xj,X]V = 2 g([Xj,Xj],Xa)Xa = 2 t2(y[Xj,Xj],y(Xa)yXa
a a

= 2 <y[x„Xj],x'ayx?.
a

If || || is the length relative to g,

\\[Xj,Xj]V\\2 = t22(yjj,X'a)2,

where yy = y[Xj,Xj] G G.

Let (yjj,X'a)(u) m 2Hj°(u) and obtain

(2) K = KtJ + 3t2 2 (H^f
a

Similarly, KiX m Kg(p^Xj,p^Xx) = K(Xt,Xx) + l\\[Xj,Xx]V\\2. Here Xt is tt-
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horizontal and Xx is a fundamentalp-vertical. .'. [A|,A"A] is zero.

(3) KiX = K(Xj,Xx).

Now, KK)i = KiX^Xj + l\\[Xx,Xp]V||2. Recall that Xx = rxX* and the

basis X'x was exactly the <?fs and e2s above. It is [t?1r,«?f] = [^,e2] = 0 and

K,e|] = 5 K1     0/     j       inHxEG.

If -B is so normalized as to have e[, e2 of length one then [e[,e2] is also of

length 1.

[xx,xj = [rxx*,rxx;] = r2[x*,x?].

From the above discussion \\[XX,X ]  ||   = {t~2) t21 or it is zero depending on

X, p. The number of nonzero ones is n — 2.

From this and (2), (3) we have:

2*^=2^ + 2^+2  KKp

(4) =^.{Kjj + 3t2^{Hjj)2} + ^KjX
i<j   V. a J        t,\

+ 2 ^M + |r2(n-2).
A<ft

Now from O'Neill's theorem [5] on the submersion -rt one can express

Kjj, KiX, Kx  relative to the curvature of M and the vT-fibre 0{n).

Ky = K{X(,Xj) = K^(X'„Xj) - iWX^xff

where W denotes the vertical component relative to the vr-fibre:

[Xj,Xjf = 2g([Xi,Xj],Xb)Xb
b

= 2 (y[Xj,Xj],X'b}X* = 2 2 77/A",*,
b b       J

\\[Xj,Xjf\\2 = 4t2 2 (Hj1;)2,       (77/ = /#(«)).
b

(5) Jfy = A^(*J,X}) - 3I3 2 (l#)2.

^i'X = '2IK%-^a) °r|l d^]> M) where V is the riemannian connection corre-

sponding to g, and hor stands for vr-horizontal component. It is easy to see

from [5, Lemma 2, p. 446] or [4], that
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\\(VxXx)hoi\\2 = 2x2g([Xj,Xj),Xx)2
j

(6) =|2(2A/^)2,

KlX = t2^(H^f.

Note. This is the same result as in Proposition 5 of [1] where KiX

= Rjxix- AA = K(XX,X ) and it must be the curvature of the same section

considered as tangent to the totally geodesic v7-fibre, i.e.,

^ = 4<-2iii^*;]ii2

where || || is the original 0(n) norm. (This agrees with Proposition 5 of [1]:

*V = RX^ = 4*      2 (C^f)  ,

where Crst = ([Xs,Xt],Xr} = Crs„ etc.) But H^*,^*]|| = 1 or 0 as above and

there are exactly (n - 2) combinations (A < fi) that give us 1:

(7) 2  ^ = \t~2(n - 2).

From (4), (5), (6), (7) we have:

2 Kb =  2 K^X'^X'j) -S3/2S (H*)2
a,B        H i<j i<j b

+ 2 3/22(a^)2+2'22(aa;)2
Kj a i,X        j

+ \C2(n - 2) + \r2(n - 2).

Therefore,

SgiM) = StfW")) - 2t2 2 2 (H^(u)f + r2(n - 2)
X Kj

after collecting terms and observing the ranges of the indices a, b, and X.

(Sds2(tr(u)) is the scalar curvature of ds2 on M at tr(u).)

A(U) = 222 (»u («))2 > 0    for all u G tr~x(U).
X Kj      J

Let S be the notation for the scalar curvature of ds2 on M, S: M —» A and

A: 0(M) -* A but it factors through M by the 0(n)-invariance of g. So,

instead of A(w) we write A(x), x = tt(u).

We proved:

Proposition. The scalar curvature of g at p(u) is equal to S(x) - t2A(x)

+ t~ (n — 2) where x = tr(u), and A(x) > 0.
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Theorem. A C°° function f: G2{M) —> 7? is a scalar curvature function for

some riemannian metric on G2{M) except perhaps when it is a nonnegative

constant.

The proof of this theorem is an application of

Theorem A ([3]). Let {N, g) be a smooth compact riemannian manifold with

gaussian {resp. scalar (/dim N > 3) curvature S and let f E C°°(A). If there is

a constant c > 0 such that

min cf < S{x) < max cf

for all x E N, then there is a smooth metric gx on N with gaussian {resp. scalar)

curvature f.

Recall that 2HJ> = (y[Xj,Xj],X'x) and Xt, Xj are y-horizontal vectors in

T(OM) of unit length relative to g = gt and therefore of unit length relative to

every gt, t > 0. The length of y^,^] in G is bounded independent of /, i.e.,

0 < Am < A(x) < AM for all x E M with Am, AM constants independent of

t.

Since S(x) is bounded, it follows that Sm(t)/SM(t) -» 1 as t —> 0, where

Sm(t) and SM(t) are the maximum and minimum of the scalar curvature of gt,

and the proof is complete.

Special case. If / = constant > 0 is the sectional curvature of (M,ds2) then

M = S"/T, r C 0(n+ 1) and 0(M) = 0(n + l)/T, where T is a finite

subgroup of 0(n + 1) [6, p. 69]. If Af is 1-connected, M = S" of radius f~x/2

and therefore G2(M) = 0(n + l)/0(2) X 0(n -2), which admits a constant

scalar curvature function as a homogeneous space of 0(n + 1). Any C00

function from G2(M) -> 7? will then be a scalar curvature for some rieman-

nian metric on G2(M), by Theorem C of [3].

The following is proved exactly the same way as the above theorem.

Proposition. A C°° /: 0(M) —> R is a scalar curvature function for some

riemannian metric on 0(M), except perhaps when f = constant > 0.

Proof. Using the same notation conventions,

K, = Kdsl(X'j,X'j)-3t2^(H,J)2,
v

Kl9 = t2 2 (77/)2,
j

Kr,e = 4?   (ixn >xe ]> K, >xe ]) = '   ^o^ii'^rj)

where 7C0 is the sectional curvature of the fibre 0(n) in its original metric < , ).

Therefore, Sg(u) = S(x) - t2Ax(u) + t~2c where Sg(u) is the scalar curvature

of O(M) relative to the metric g = gt at u,

A,(«) = 2 2 2(^("))2>o
Kj n
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bounded independent of t and c is the constant positive scalar curvature of

(0(m),<,».

If 0 < fm < fM by the exact same procedure as in the theorem we obtain

that / is a scalar curvature on 0(M).

In the particular case that fisK°p with K the constant positive curvature

of M, then M = S"/T and O(M) = 0(n + 1)/T is a homogeneous space of

a compact lie group that admits a metric with positive constant scalar

curvature. By Theorem C of [3], all C°° functions on O(M) are scalar

curvatures and in particular /.

References

1. G. Jensen, Einstein metrics on principal fibre bundles, J. Differential Geometry 8 (1973),

599-614. MR 50 #5694.
2. S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. II, Interscience,

New York, 1969. MR 38 #6501.
3. J. Kazdan and F. Warner, A direct approach to the determination of gaussian and scalar

curvature functions, Invent. Math. 28 (1975), 227-230.

4. H. B. Lawson and S. T. Yau, Scalar curvature, non-abelian group actions, and the degree of

symmetry of exotic spheres, Comment. Math. Helv. 49 (1974), 232-244. MR 50 #11300.

5. B. O. O'Neill, The fundamental equations of a submersion Michigan Math. J. 13 (1966),

459-469. MR 34 #751.
6. J. Wolf, Spaces of constant curvature, 3rd ed., Publish or Perish, Cambridge, Mass.,1974.

Department of Mathematics, University of Western Ontario, London, Ontario, Cana-

da

Current address: IMECC, UNICAMP, Campinas, S.P., Brazil


