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SCALAR CURVATURES ON O(M), G,(M)

ALCIBIADES RIGAS!

ABSTRACT. We show that every C® f: G,(M) - R, M" a compact con-
nected riemannian manifold n > 3, is the scalar curvature function of some
complete riemannian metric on G,(M), the grassmann bundle of 2 planes
over M, except possibly when K = constant > 0. A similar result holds for
O(M) bundle of orthonormal frames on M.

This note is an application of Theorem A of [3] and O’Neill’s formula for
the curvature of a riemannian submersion [5], [4] and [1]. Theorem C of [3]
gives an affirmative answer to the question described in the abstract if
f(P) < 0 for at least one 2-plane section P tangent to M.

Preliminaries. Let (M",ds®) be a compact riemannian manifold and let
O(M) be the principal O(n) bundle of ds*-orthonormal frames on M. Choose
a connection of 7: OM — M.

We assume the setting of [1, Section 1]. (See also [4].) Briefly, let {, ) be the
bi-invariant metric on O(n) defined via the positive definite — B (killing form)
on the lie algebra G of O(n), and y the connection form for =. Split each
X € T(OM) into horizontal and vertical components relative to y: X = X
+ XY, For t > 0, g, = 7*ds* + t*(y,v) is a family of O(n)-right invariant
complete riemannian metrics on P and relative to each one 7 is a riemannian
submersion on (M, ds* ). Fixat > 0andletg = g,. Let U be open in M and

1»-..,X, bea ds*-orthonormal (o.n. from now on) frame on U. Consider
reductive decomposition of G = N + H, orthogonal relative to — B where H
is the lie algebra of O(2) X O(n — 2), and N is the space of skew symmetric
matrices of the form:

00 —¢!
00 —q' ], & n column vectors in R" 2,
£ 0

(see [2, vol. I, p. 280]).
Lete[,e;, r,s =1,...,n— 2, be the obvious (—B)-o.n. basis of N, where
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e] is the matrix we obtain above if £ is the rth standard basis element of R"?
and n = 0. Similarly with e5. Let H = H, + H,_, with A, = {(?),r € R}
the lie algebra of O(2) and H,_, the lie algebra of O(n — 2).

Let X7, 1,..., X545 X3,_3; X3,5, ..., X,,,, be notation for an o.n.
basis of N + H, + H,, where r = dim O(n). If A — 4* denotes the lie algebra
monomorphism G — X¥(OM), the vector fields of O(M), determined by the

free O(n) action, we have that X, ..., X,; t"'X,,tl, ey t“'Xn"_‘H form a local
g-o.n. basis on 'rr_](U), where X; is the y-horizontal lift of X.
Consider now the following
oM .
O(M)’ 4 -+ 0(2) X(O(rz _ 2) = GZ(M)’ g
L la
M, ds* = M, ds*

where ¢ is the metric on G,(M) with respect to which p is a riemannian
submersion. Let u € 7 '(U) C O(M), p(u) € G,(M), x = n(u) € M. We
want to calculate Sg( p(u)): the scalar curvature at p(u) relative to g.

A g-o.n. frame at p(u) is obtained by projecting a g-o.n., p-horizontal (i.e.,
normal to the p-fibre relative to g) frame at u of O(M). From gp = = follows
that Horiz (p) = Horiz (7) + span {X,, |, ..., X5,_4}» X5 = 'x¥ . (sum
orthogonal relg). From nowonlet 1 < a, 8 < n+r3n—-3 <a<n+r,
n+1<bnd<n+rrn+1 < p<3n—-41<ij,k<n

Let Kaﬁ = Kg(p*(Xa),p* (XB)) where X_ is one of the X’s or ' x*’s and
K, is the sectional curvature relative to g. By O’Neill’s formula for the
curvature of a riemannian submersion ([5], [4], [1]),

— V2
(1) K5 = K, (X,, Xp) + 310X, Xp) I,

where V stands for “vertical part” or “g-orthogonal projection onto the p-
fibre” in any 7,(OM ). Notice that

X, 61" = 2 (X, XL X)X, = 2 2 GIX, X1 v00) X,
=3 XL XL XX
If || || is the length relative to g,
X, X1 I = 23 Gy X0

where y; = (X, X]] € G.
Let <y;;, X > (4) = 2H; (u) and obtain

@) K, = K; + 3¢° 3 (Hy):

- - V2 .
Similarly, K, = K;(py X;, e X\) = K(X;, X,) + 3x, X, 1 |I”. Here X; is =-
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horizontal and X, is a fundamental p-vertical. .". [X;, X, ] is zero.
3) K = KX, X,)-

Now, FM = K(XA,X”) + %H[XA,XM]VIIz. Recall that X, = t‘lX)\* and the
basis X was exactly the e[’s and ey’s above. It is [¢], e]] = [e},e;] = 0 and

o-v
[4@=%C 0 in A, C G.
0

If — B is so normalized as to have e[, e; of length one then [e], e;] is also of
length 1.

o X,) = [, 7 k] = 2T X

From the above discussion [|[X;, XP]V H2 = (1_2)2t2 1 or it is zero depending on
A, p. The number of nonzero ones is n — 2.
From this and (2), (3) we have:

K .= K. +3 K, + K
5; «h E, Y % i A%,L A
= K. +32S (H” 2} + 3K,
@) i;j{ Y g(”) g\ i

+ 3 K, +3 % n-2).
>\<M Ap, 4 ( )

Now from O’Neill’s theorem [5] on the submersion = one can express
K, Ky, Ky, relative to the curvature of M and the 7-fibre Oo(n).

/AN
Ky = K(X, X) = Kuo(X}, X)) = 3llx, x|
= i A ds2!\A > X )~ LA 4
where W denotes the vertical component relative to the 7-fibre:
w
[Afl’/\,j] = %g([/\,p/Yj],Xb)Xb
= S G XLXX = 23 HYX,

W2 _ .2 by2 b _ ggb
11X, X1 117 = 4 %(ij , (HY = Hj(u)).

’ /7 2
(5) K; = Kjo(X}, X)) = 3¢ % (H))".

Ky = tzll(VXi X)\)horll2 ([5), [4]) where V is the riemannian connection corre-
sponding to g, and hor stands for #-horizontal component. It is easy to see
from [5, Lemma 2, p. 446] or [4], that
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2
1% )™ I = S 4e (X, X1 %)
J
2
©6) =iZ (2H}),

Kix

1

S HN.
J

Note. This is the same result as in Proposition 5 of [1] where K,
= Ry Ky, = K(X,,X,) and it must be the curvature of the same section
considered as tangent to the totally geodesic 7-fibre, i.e.,

- 2
Ky, = 321065, Xl
where || || is the original O(n) norm. (This agrees with Proposition 5 of [1]:
- 2
Ky, = Ry, = 2 ? (C“}‘f) ,

where C], = {[X,, X,]. X,> = C;, etc.) But ||[X)\*,XF*]|| = 1 or 0 as above and
there are exactly (n — 2) combinations (A < p) that give us 1:

(7) )E Ky, = 3720 = 2).
m
From (4), (5), (6), (7) we have:
74 — ’ Y 2 b\2
EB K = igj K2 (X7, X7) Ej 3t % (H)
+ 33 S HH+Z A @)
i<j a iA J

+12(n - 2) + 3% (n - 2).

Therefore,
Se(pw) = Sgalaw) =203 3 (H)Mw) + 7% (n = 2)

after collecting terms and observing the ranges of the indices a, b, and A.
(S 2(m(u)) is the scalar curvature of ds* on M at m(u).)

AU)=23 3 (H}w)’ >0 forallu € n ' (V).
A i)

Let S be the notation for the scalar curvature of ds®> on M, S: M - R and
A: O(M) — R but it factors through M by the O(n)-invariance of g. So,
instead of A(u) we write A(x), x = 7(u).

We proved:

PROPOSITION. The scalar curvature of § at p(u) is equal to S(x) — 1* A(x)
+ t72(n — 2) where x = w(u), and A(x) > 0.
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THEOREM. A C® function f: Gy(M) — R is a scalar curvature function for
some riemannian metric on G,(M) except perhaps when it is a nonnegative
constant.

The proof of this theorem is an application of

THEOREM A ([3]). Let (N, g) be a smooth compact riemannian manifold with
gaussian (resp. scalar if dim N > 3) curvature S andlet f € C*(N). If there is
a constant ¢ > 0 such that

min ¢f < S(x) < max cf
for all x € N, then there is a smooth metric g, on N with gaussian (resp. scalar)
curvature f.

Recall that 21-1,.;‘ = <y[X,-,Xj],X »» and X, X; are y-horizontal vectors in
T(OM) of unit length relative to g = g, and therefore of unit length relative to
every g, t > 0. The length of y[X‘.,X;.] in G is bounded independent of 1, i.e.,
0 <A, <Alx) < Ayforallx € Mwith A, A, constants independent of
t.

Since S(x) is bounded, it follows that S, (¢)/S,,(t) > 1 as t — 0, where
S,.(t) and S,,(¢) are the maximum and minimum of the scalar curvature of g
and the proof is complete.

Special case. If f = constant > 0 is the sectional curvature of (M, dsz) then
M=S"/T,T C On+1) and O(M) = O(n + 1)/T, where T is a finite
subgroup of O(n + 1) [6, p. 69]. If M is 1-connected, M = S" of radius f V2
and therefore G,(M) = O(n + 1)/0(2) X O(n — 2), which admits a constant
scalar curvature function as a homogeneous space of O(n + 1). Any C*®
function from G,(M) — R will then be a scalar curvature for some rieman-
nian metric on G,(M ), by Theorem C of [3].

The following is proved exactly the same way as the above theorem.

PROPOSITION. 4 C* f: O(M) — R is a scalar curvature function for some
riemannian metric on O(M), except perhaps when f = constant > 0.

ProoF. Using the same notation conventions,

Kj= Kjo(X\,X}) - 3 % (H")?,

Ky = P ; (1_1110)2,

Koy = 302X X0 ) I XD = 2K (X, X))

where K, is the sectional curvature of the fibre O(n) in its original metric , ).

Therefore, S,(u) = S(x) — I A (u) + 172¢ where S, (u) is the scalar curvature
of O(M) relative to the metric g = g, at u,

AW =23 3 (HwW) >0
i<jm
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bounded independent of ¢ and ¢ is the constant positive scalar curvature of
(0(m), <, 7).

If 0 < f,, < fy by the exact same procedure as in the theorem we obtain
that f is a scalar curvature on O(M).

In the particular case that fis K o p with K the constant positive curvature
of M, then M = S"/T and O(M) = O(n + 1)/T is a homogeneous space of
a compact lie group that admits a metric with positive constant scalar
curvature. By Theorem C of [3], all C* functions on O(M) are scalar
curvatures and in particular f.
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