ON THE STRUCTURE OF THE FIXED-POINT SET OF A NONEXPANSIVE MAPPING IN A BANACH SPACE

RONALD E. BRUCK, JR.

ABSTRACT. If C is a closed convex subset of a reflexive, strictly convex Banach space E, and $T: C \to E$ is a nonexpansive mapping which has a fixed-point in the interior of C, then there exists a nonexpansive mapping $T^*: E \to E$ whose fixed-point set in C is the fixed-point set of T.

In this note we investigate the structure of the fixed-point set F(T) of a nonexpansive mapping $T: C \to E$, where C is a closed convex subset of a Banach space E and T does not necessarily map C into itself. It is known that T need not have an extension to a nonexpansive mapping $T^*: E \to \overline{\operatorname{co}} T(C)$, (De Figueiredo and Karlovitz [3], Bruck [1]), so the following result is of interest:

THEOREM. If C is a closed convex subset of a reflexive strictly convex Banach space $E, T: C \to E$ is nonexpansive, and T has a fixed point in the interior of C, then there exists a nonexpansive mapping $T^*: E \to E$ whose fixed points in C are exactly the fixed points of T.

Before proving the theorem, we establish a variant of Lemma 5 of [2]:

LEMMA. If y is a fixed point of T interior to C then there exists a nonexpansive retraction of E onto the cone

$$K(y; F(T)) = \text{cl } \bigcup \{t \cdot F(T) + (1-t)y : t > 0\}.$$

PROOF. Let $\delta > 0$ be so small that $B = \{x \in E: ||x - y|| \le \delta\}$ is contained in C. Since Ty = y and T is nonexpansive, $T(B) \subset B$. The restriction $T|_B$ is a nonexpansive mapping of B into itself, so by [2, Theorem 2] there exists a nonexpansive retraction r_1 of B onto $F(T|_B) = F(T) \cap B$. For t > 0 define

$$B_t = tB + (1 - t)y, \qquad F_t = t \cdot F(T) \cap B + (1 - t)y,$$

and

Received by the editors January 2, 1976.

AMS (MOS) subject classifications (1970). Primary 47H10.

Key words and phrases. Nonexpansive mapping, nonexpansive retraction.

$$r_t(x) = t \cdot r_1(t^{-1}x + (1 - t^{-1})y) + (1 - t)y$$

for $x \in B_t$, $r_t(x) = y$ for $x \in B_t$. F(T) is convex because E is strictly convex, so for 0 < s < t, $F_s \subset F_t$ and $B_s \subset B_t$. It is easy to verify that r_t is a retraction of E into F_t which is nonexpansive on B_t (but not on E). Evidently $\cup \{B_t : t > 0\} = E$ and cl $\cup \{F_t : t > 0\} = K(y; F(T))$. Denote K(y; F(T)) by K. We shall construct a nonexpansive retraction of E onto K as the limitin an appropriate product space—of a subnet of $\{r_t : t > 0\}$ (limits taken as $t \to \infty$).

For x in E put $E_x = \{u \in E: ||u - y|| \le ||x - y||\}$, $P = \prod_{x \in E} E_x$, give E_x its weak topology, and P the corresponding product topology. By the reflexivity of E and Tychonoff's theorem, P is compact. Evidently $\{r_i: t > 0\}$ is a net in P, and therefore has a subnet which converges to some r in P.

Given any two x_1 , x_2 in E, it follows from the weak lower semicontinuity of the norm, the nonexpansiveness of r_i on B_r , and the fact that x_1 , $x_2 \in B_t$ for sufficiently large t, that $||r(x_1) - r(x_2)|| \le ||x_1 - x_2||$. That is, r is nonexpansive. Since $F_s \subset F_t$ for 0 < s < t, r_t leaves such point of F_s fixed; hence so does r. The denseness of $\bigcup F_s$ in K and the continuity of r imply that r fixes each point of K. Finally, each r_t maps E into $F_t \subset K$, and since K is weakly closed (being closed and convex) it follows that the range of r is contained in K. These three facts-r fixes each point of K, the range of r, is contained in K, and r is nonexpansive-mean r is a nonexpansive retraction of E onto K. O.E.D.

PROOF OF THEOREM. Put $R = \bigcap \{K(y; F(T)): y \in F(T) \cap \text{ int } C\}$. By hypothesis, $F(T) \cap \text{ int } C \neq \emptyset$, and by the Lemma, there exists a nonexpansive retraction of E onto each K(y; F(T)); by [2, Theorem 5], therefore, there exists a nonexpansive retraction of E onto R. Let T^* be such a retraction. We claim that T^* satisfies the conclusion of the Theorem. Obviously $F(T) \subset C \cap R = F(T^*|_C)$. If $F(T) \neq F(T^*|_C)$, let $x_0 \in C \cap R \setminus F(T)$. We reach a contradiction as follows: let $y_0 \in F(T) \cap \text{ int } C$. Since F(T) is closed, the intersection of the line segment $[x_0, y_0]$ with F(T) contains a point z_0 closest to x_0 . $z_0 \neq x_0$ (because $x_0 \notin F(T)$), $x_0 \in C$, and $y_0 \in \text{ int } C$, therefore $z_0 \in \text{ int } C$. Choose a point $x \neq z_0$ in $[x_0, z_0]$ which is closer to z_0 than to bdry C; thus $x \notin F(T)$. Now let y be the point of F(T) which is closest to x (this exists because F(T) is closed and convex and E is reflexive). Since x is closer to z_0 (which is in F(T)) than to bdry C, y must lie in int C. But R is convex, $x_0, z_0 \in R$, and $x \in [x_0, z_0]$, so $x \in R$. In particular,

$$x \in K(y; F(T)).$$

To summarize, there exists a point x such that $x \notin F(T)$, but for the point y of F(T) closest to $x, x \in K(y; F(T))$. This is an obvious impossibility, and establishes $F(T^*|_C) = F(T)$. Q.E.D.

COROLLARY. If, in addition to the hypotheses of the Theorem, $F(T) \subset \text{int } C$, then $F(T^*) = F(T)$.

PROOF. $F(T^*)$ is convex and, by the Theorem, $F(T^*) \cap C = F(T)$ \subset int C; thus $F(T^*) \subset C$, hence $F(T^*) = F(T)$. Q.E.D.

REFERENCES

- 1. R. E. Bruck, Jr., A characterization of Hilbert space, Proc. Amer. Math. Soc. 43 (1974), 173-175. MR 49 #5788.
- 2. —, Properties of fixed point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 251-262. MR 48 #2843.
- 3. D. G. de Figueiredo and L. A. Karlovitz, On the extension of contractions on normed spaces, Proc. Sympos. Pure Math., vol. 18, Part 1, Amer. Math. Soc., Providence, R. I., 1970, pp. 95-104. MR 43 #877.

Department of Mathematics, University of Southern California, Los Angeles, California 90007