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INERTIAL COEFFICIENT RINGS AND THE IDEMPOTENT

LIFTING PROPERTY1

ELLEN E. KIRKMAN

Abstract. A commutative ring R with identity is called an inertia!

coefficient ring if every finitely generated ^-algebra A with A/N separable

over R contains a separable ^-subalgebra S of A such that A = S + N,

where N is the Jacobson radical of A. We say A has the idempotent lifting

property if every idempotent in A/N is the image of an idempotent in A.

Our main theorem is that any finitely generated algebra over an inertial

coefficient ring has the idempotent lifting property.

All rings contain an identity; all subrings contain the identity of the

overring; all homomorphisms preserve the identity. Throughout R denotes a

commutative ring and A an R -algebra which is finitely generated as an

fi-module. The Jacobson radical of a ring B is denoted rad(fi) and

throughout rad(A) = A. A separable fi-subalgebra 5 of A such that A = S

+ A is called an inertial subalgebra. If every finitely generated fi-algebra A

with A/N fi-separable has an inertial subalgebra, R is called an inertial

coefficient ring. The basic properties of inertial subalgebras and inertial

coefficient rings can be found in [7].

If / is an ideal of a ring B we call (B, I) an L. I. pair (lifting idempotent

pair) if every idempotent in the factor ring fi// is the image of an idempotent

in B; if (A, A) is an L. I. pair we say A has the idempotent lifting property.

Our main theorem is motivated by a conjecture of E. C. Ingraham that if

every finitely generated fi-algebra has the idempotent lifting property then R

is an inertial coefficient ring. Our proof of the converse of this conjecture has

as a corollary that an inertial coefficient ring is a Hensel ring (see [5], [6], and

[10] for definition and properties of Hensel rings), recalling the role Hensel

local rings have played in generalizations of the Wedderburn Principal

Theorem by Azumaya, Ingraham, and W. C. Brown. A second immediate

consequence of our main theorem is that when R is an inertial coefficient

ring, two inertial subalgebras of an fi-algebra A are conjugate under an inner

automorphism of A, generalizing Malcev's uniqueness statement to Wedder-

burn's Principal Theorem.
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Our main theorem is proved in three steps. We first consider the case where

R is an inertial coefficient ring which contains no idempotents but 0 and 1,

(i.e. fi is a connected ring) and show fi/rad(fi) is connected. We next use the

Pierce representation of R as the ring of global sections of a sheaf of

connected rings [12] to show that if R is any inertial coefficient ring, an

idempotent in fi/rad(fi) is the image of an idempotent in R. Finally we show

that any finitely generated fi-algebra has the idempotent lifting property.

Theorem 1. Let R be a connected ring. If R/rad(R) has an idempotent not

equal to 0 or 1 then R is not an inertial coefficient ring.

Proof. By [9, Proposition 4, p. 54] there exists a p G rad(fi) such that

x2 — x + p G R [x] has no root in rad(fi). Let/(x) = x3 — x2 + px. Reduc-

ing the coefficients of/(x) modulo rad(fi) we obtain,/(x) = x2(x — 1), but it

is easy to check that there do not exist monic polynomials g(x) and h(x)

contained in R[x] such that f(x) = g(x)h(x), with g(x) = x2 and h(x) =

x - 1.

Let A be the finitely generated, faithful, free, commutative fi-algebra

A = R [x]/</(x)>. Using the Chinese Remainder Theorem we obtain

A/ (rad(R)A) ^(iR/radR)[x]/(x2y) ® ((R/radR)[x]/(x - 1>).

Since rad(fi) -A C N, A/N at R/rad(R) 0 fi/rad(fi), and hence A/N is

fi-separable.

We shall show that the assumption that A has an inertial subalgebra S

leads to a contradiction. By [7, Proposition 2.8, p. 80] if such an 5 exists, it

must be a projective fi-module and by [2, proof of Lemma 1, p. 11]

rank/, 5 = 2, where by rank^ 5 we mean the dimension of the free fim-mod-

ule Sm, for any maximal ideal m of R [3, Theorem 4.12, p. 32].

Case 1. Assume S is a connected ring. By the "projective lifting property"

of separable algebras [3, Proposition 2.3, p. 48], A is a projective S-module.

Since S is connected, ranks(/l) is defined, and the multiplicative property of

rank [3, Exercise 2, p. 35] yields 3 = rank^(^) = rank^(5) ranks(^4) =

2 ranksL4). Thus 2 divides 3, a contradiction.

Case 2. Assume S has an idempotent e ¥= 0, 1. Since rankR(Se) — 1 and

since Re is an fie-direct summand of Se [3, Corollary 4.2, p. 56], we have

Se at Re as rings. Similarly S(l - e) a fi(l - e), so S = Re® R(l - e)

(as rings). We now show that we can assume e to be of the form axx + a2x2

where ax £ rad(fi) and a2 is a unit of R such that a2 is an idempotent in

fi/rad(fi).

First, writing e = a0 + axx + a2x   with a, £ R, we have

0 = e2 — e = (a2, — a0) + (2a0ax — ax)x

+ (a2 — a2 + 2a0a2)x2 + (2axa2)x3 + (a\}xA.

Now applying the relations x3 = x2 — px and x4 = (1 — p)x2 — px we ob-

tain
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0 = (al - a0) + (2a0ax - ax - 2axa2p - a\p)x

+ {a] - a2 + 2a0ax + 2axa2 + a\(l — p))x2.

This equation yields the following relations:

0) al = a0,

(2) 2a0ax — ax - 2axa2p - alp = 0,

(3) a] — a2 + 2a0a2 + 2axa2 + a\(l - p) = 0.

Since R is connected, equation (1) implies a0 = 0 or a0 = 1 and equations (2)

and (3) imply e or 1 — e is of the form axx + a2x2 where ax E rad(fi) and d2

is an idempotent in fi/rad(fi).

Second, one can check that A/N = (fi/rad R)[x]/(x2 - x). From A = S

+ A it follows that there exist rx, r2 E R and nEN such that x = r2 +

(rx — r2)e + n. Since e = d2x2 in y4/(rad(fi)^4), we have

x = r2 + (r, — r2)a2x2 + n    in A/ (rad(fi )A)

and

x = r2 + (rx - r2\d2x    in A/N,

where a denotes the image of a E A in A/N. Hence r2 = 0 and 1 = fxa2.

Since d2 is both a unit and an idempotent of A/N, d2 = 1. But then by [5,

Lemma 1.2, p. 46], d2 = 1 in A/(rad(R)A) and, hence, e = x2 and a2 is a unit

of R.

Thus

A = Ae ® A(l - e) = (a2x2 + axx} © (a2x2 + axx - 1>

= <x2 + a2laxx) © <x2 + a2xaxx - a2"'>.

Furthermore

x2 + a2xaxx = x2    modulo rad(fi)y4

and

x2 + a2laxx - af1 = x2 - 1 modulo rad(fi)^.

Finally (x2 - 1> = (x - 1> in A/rad(R)A, since (x2 - 1> C (x - 1> and

(1 - x)(x2 - 1) - (x - 1) in ^/(rad(fi)y4) implies <x - 1> C <x2 - 1>.

Thus by [5, proof of Theorem 3.1, p. 54] there exist monic polynomials g(x)

and hix) in R[x] such that x3 - x2 + px = g(x) ■ h(x) with g(x) = x2 and

h(x) = x - 1 in (fi/rad fi)[x]. This contradicts the choice of p and com-

pletes the proof.

Theorem 1 states that if R is a connected inertial coefficient ring then

fi/rad(fi) is connected, and so R trivially has the idempotent lifting property.

We next use the Pierce representation of R to extend Theorem 1 to an

arbitrary inertial coefficient ring.

The decomposition space X(R) of R can be viewed as the quotient space
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obtained from the set of prime ideals of R endowed with the Zariski topology

by identifying the points in each connected component. It can be shown [11,

Proposition 11.12, p. 30] that the open, closed subsets of X(R) form a basis

for the topology on X(R), and that any open, closed subset of X(R) is of the

form N(e) = {x G X(R): x C V(R(l - e))), where e is an idempotent of R

and V(R(l — e)) is the set of prime ideals of R which contain the ideal

fi(l -e).

Pierce represents R as the ring of global sections of a sheaf over X(R)

where at each point x G X(R) the stalk Rx = R/I(x) is a homomorphic

image of R and is a connected ring. If M is an fi-module, Mx = M 0R Rx =

M/I(x)M is an fix-module; if m G M, mx denotes the image of m in Mx.

Proposition 2. If (Ax, Nx) is an L. I. pair far all x G X(R), then (A, N) is

an L. I. pair.

Proof. Let u G A be such that u2 — u G N. We shall produce an idempo-

tent e £ N such that u — e G N.

Since Rx is a flat fi-module, without ambiguity we can let Nx denote the

image of N under the canonical homomorphism A -> A /'I(x)A = Ax. Now

ux = u + I(x)A is an element of Ax such that ux + Nx is an idempotent

element of Ax/Nx. Since (Ax, Nx) is an L. I. pair and since an idempotent in

Ax can be lifted to an idempotent in A [11, Proposition 11.20, p. 34], there

exists an idempotent f(x) G A such that ux = [f(x)]x + [n(x)]x for some

n(x) G N. By [11, Proposition 11.16, p. 32] for each x G X(R) there exists an

idempotent e(x) G R such that ue(x) = f(x)e(x) + n(x)e(x) and u =

L7(x)], + [h(x))y for ally G N(e(x)).

By the "partition property" of X(R), the open cover [N(e(x))} of X(R)

has a finite refinement of disjoint, open, closed sets {A/(e,)}7Li, for some

idempotents e, £ R, which covers X(R). Since [N(e,)}f_ x is a cover of X(R)

by disjoint sets, it follows that 1 = S^Li^, and e^- = 0 for each i ¥= j.

Furthermore N(e/) C N(e(Xj)) for some x, £ X(R), and thus it can be

shown that e,-e(x,.) = e,; hence, uet = fiei + n,e, where f = /(x,) and n, =

n(Xj). Since the e, are pairwise orthogonal idempotents and each f is an

idempotent, then e = 27=i/^, is an idempotent. Now

mm m

u = 2 uet= 2 (/>/ + ",«,) = e + 2",*/>
i=l 1=1 1-1

and therefore u — e G N.

Corollary 3. // fi is an inertial coefficient ring then (fi, rad(fi)) is an L. I.

pair.

Proof. Each stalk Rx is a connected ring and is an inertial coefficient ring

because it is a homomorphic image of R. By Theorem 1, iRx, rad(Rx)) is an

L. I. pair for every x G XfR). Since (rad R)x C rad(Rx) and Rx is a com-

mutative ring, then iRx, (rad R)x) is an L. I. pair for every x G X(R) [5,
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Corollary 1.3, p. 46]; hence by Proposition 2, (R, rad(fi)) is an L. I. pair.

We are now able to prove the general case:

Theorem 4. Let R be an inertial coefficient ring and A a finitely generated

R-algebra. Then iA, A) is an L. I. pair.

Proof. By replacing R/ann\hRA by R we may assume that A is a faithful

fi-algebra.

Let u E A be such that u2 - u E N. We must show there exists an

idempotent e E A such that u - e G A. Let B denote the fi-subalgebra of A

generated by u. Now B/B n A, being a homomorphic image of

(fi/rad R)[x]/(x2 — x}, is a separable fi-algebra. Since B is a finitely

generated fi-algebra, B n A C rad(fi) [1, Corollary, p. 126], and hence

fi/rad(fi) is a separable fi-algebra. Since B is a commutative fi-algebra, by

[7, see proof of Proposition 3.3, p. 85] B is an inertial coefficient ring, and

thus by Corollary 3 (B, rad(fi)) is an L. I. pair. It follows from the

commutativity of B that (B, A n fi) is an L. I. pair. Then u2 - u E N n B

implies that there exists an idempotent e E B such that u — e E A n B.

Then e E A and u — e G A.

Corollary 5. An inertial coefficient ring is a Hensel ring.

Proof. To show R is a Hensel ring it suffices to show that for any finitely

generated, commutative, free fi-algebra A, (A, rad(fi)^4) is an L. I. pair [5,

Theorem 4.1, p. 55]. Since R is an inertial coefficient ring, (A, N) is an L. I.

pair, and since rad(R)A C A and A is commutative, then (A, rad(fi)^) is an

L. I. pair.

The following corollary to Theorem 4 follows immediately from [8,

Corollary 2, p. 556].

Corollary 6. // R is an inertial coefficient ring and if S and T are two

inertial subalgebras of a finitely generated R-algebra A, then T = (1 + «)~' •

5(1 + ri) for some nEN.

N. S. Ford has given an example of a ring R and an fi-algebra A such that

S and T are not isomorphic [4].

The following corollary to Theorem 4 follows immediately from [8, Theo-

rem 2, p. 554].

Corollary 7. 77ie following are equivalent properties of a commutative ring

R:

if) For all finitely generated, commutative R-algebras A such that A/N is

R-separable, there exists a separable R-subalgebra S of A such that A = S +

A.

(ii) All finitely generated, commutative R-algebras have the idempotent lifting

property.

If  Ingraham's  conjecture is  true  then  it  is  unnecessary  to  restrict  the
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algebras A in Corollary 7 to commutative R -algebras, for then the lifting of

idempotents from A/N to A in all finitely generated fi-algebras A is equiv-

alent to the lifting of the separability of A / N to a separable subalgebra 5 of

A in all finitely generated fi-algebras.
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