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STRICT TOPOLOGY AND P-SPACES

SURJIT SINGH KHURANA AND SEKI ALEXANDER CHOO

ABSTRACT. For a completely regular Hausdorff space X and a normed
space E, let C,(X, E) be the space of all bounded continuous functions from
X into E with strict topology B,. It is proved that if X is a P-space,
(Cy(X, E), By) is Mackey; if, in addition, E is complete, then (C,(X, E ), B;)
is strongly Mackey.

In this paper, X denotes a completely regular Hausdorff space, K the field
of real or complex numbers (we shall call them scalars), C,(X) all scalar-
valued bounded continuous functions on X, (E, ||-||) a normed space over K,
Cb(X, E) all bounded continuous functions from X into E, and E’ the
topological dual of X. We denote by ( , ) the natural bilinear form on E X E’
or E’ X E. All vector spaces are taken over K. Let %(X ) be all Borel subsets
of X and M,(X) all tight scalar-valued Borel measures on X [1], [4], [10]. We
put

M,(X,E') = {p: D(X) — E’: p finitely additive,
and |u| € M,(X), where for any B € B(X), |u[(B) =
sup{X [{u(B;), x;|: {B,;} a finitely Borel partition
of Band {x;} C E with ||x;|| < 1,Vi}}

(see [1], [4]). For a p € M(X,E’) and x € E, p,: D(X) — K, defined by
p(B) = {(u(B),x), B € B(X), is in M,(X). Integration with respect to a
p € M,(X,E’) is taken in the sense of [1]. For a p € M,(X,E’) and f
€ C,(X,E), Iu(f) < lul (171, where [Ifll: X = R, [l (x) = IS [1. p.
851].

T]he strict topology B, on C,(X, E) is defined by the family of seminorms
[|-Il,, as & varies through all scalar-valued functions on X, vanishing at infinity,
Ifll, = sup,exh(x) fIl, f € Cy(X,E). Itis proved in [1] that C,(X) ® E'is
dense in (C,(X,E),By) (Co(X,E),By) = M/(X,E’), and B, is the finest
locally convex topology which coincides with compact-open topology on
norm-bounded subsets of C,(X, E); also bounded subsets of (Cy(X, E), By)
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are norm-bounded. (For E = K = R this result is proved in [9], but it
immediately carries over to the case when E is a normed space since M, (X, E’)
is a closed subspace of the Banach space (C,(X,E),|[)'.) Considering
M/(X,E’) a Banach space, with norm induced by (C,(X, E), |||l)’, we have
el = |ul(X), Vu € M,(X,E’) (it is a simple verification, cf. [4, p. 315]).

A completely regular Hausdorff space X is called a P-space if every Gj set
is open in X [2, p. 63]. In this paper we prove that if X is a P-space then
(Cy(X,E),By) is Mackey; if, in addition, E is complete, then E is strongly
Mackey. A Hausdorff locally convex space G is called strongly Mackey if
every o(G’, G ) relatively countably compact subset of G’ is equicontinuous (we
refer to [8] for locally convex spaces).

We first prove the following lemmas.

LEMMA 1. Let 2V denote all subsets of N, with product topology. If A 2N 5k
is a sequence of countably additive measures (this implies they are continuous) and
limA, (M) = NM ) exists VM C N, then A, — X uniformly on 2V,

Prookr. This is a particular case of [6, Lemma 1]. To prove this we have only
to note that by Osgood’s theorem [5, p. 86], the sequence {A,} is equicontin-
uous at some point of 2¥. For completeness we give details.

Since {0,1} is a topological group, with discrete topology (1 + 1 = 0,
mod2), G = 2V = {0, l}N, with product topology, is also a topological
group, which we write additively with neutral element 0. Fix ¢ > 0 and
suppose A,’s are equicontinuous at p € G. There exist a 0-nbd

V= (ifll £")<j=i):'i+' {>,

where §, = {0}, 1 < i < m, and.g. ={0,1}, m+ 1 <j < oo, such that
(%) N (p+ V)= N(p) <¢/8, Vn.

Letp = (py,P3s -+ sBpsPys1»---) and put p’ = (py,py, ...,p,,0,0,...) and
P’ =1(0,0,...,0,p,,1:Pns2---)- P =p +p". Fix v € V and take v’ € V
such that p” + v’ = v. From (%) we get |A (p' +p” +v') — A, (p' + p")l
< ¢/8and so [N, (p) + A, (v) = A,(p)) — A, (p")| < ¢/8 (note A,’s are addi-
tive). This gives [A,(v) — A, (p”)| < ¢/8, Vv € V. In particular, |\, (p")|
< ¢/8. Combining these results we get |A,(V)| < ¢/4, Vn. Since Ay = {1,
2,...,m} N 2N (i.e., subsets of {1,2,...,m}) is finite there exists a positive
integer n, such that |\, (4) — M4)| < &/4,Vn > ny and 4 € %,. Take ¢
g2V g= (9>92++++9p>Gs1s---) and put ¢’ = (g,, 95, - - -4, 0,0,...),

9" =1(0,0,...,0,9,,,1,9p42----)- Then ¢” + ¢’ = q and q¢” € V. For n
> nO’

1A(9) — M)l < [N, (g") = Mgl + [N\, (g7) — Mg ")

e/4+ N, (g") + IMg")| < &/4 + /4 +e/d < e

VANVAN



282 S. S. KHURANA AND S. A. CHOO

This proves the result.
A subset A C M,(X,E’) is said to be uniformly tight if given ¢ > 0, there
exists a compact subset K C X such that [u|(X\K) < & Vu € 4.

LEMMA 2. 4 subset A C M,(X,E’) is By-equicontinuous iff A is uniformly tight
and norm-bounded.

ProoOF. Let 4 be norm-bounded and uniformly tight. Put oy = sup{/lull: p
€ A}. Since Bj-topology is the finest locally convex topology, coinciding with
compact-open topology on norm-bounded subsets of C,(X, E), it is enough to
prove that for any & > 0 there exists a compact subset K of X and somen > 0
such that

Z=1{f€ GW.E) I/l < kIfllx <)
C{g € G(X.E): |u(g) < 1.Vy € 4).

By uniform tightness of A, there exists a compact K C X such that |u|(X \K)
< 1/(2k + 1), Vu € A. Take n = 1/2(1 + ap). Foran f € Z and p € 4,

WHE< [IAI el = [l + [, Dl
< ag/2(1 + ap) + k/(2k + 1) < 1.

This proves 4 is Sj-equicontinuous.

Conversely, if 4 C M,(X,E’) is By-equicontinuous then A4 is norm-bound-
ed, since By < |/l on C,(X,E). Fix ¢ > 0. There exists a scalar-valued
function ¢ on X such that

{f€ CGXE): |fell < 1} C{g € CX,E): |m(g)l < 1,V € A4}.

Take a compact set K, in X, with the property that K D {x € X: |p(x)| > &}.
If |u/(X\K) > &, for some p € A, then, by using the fact that € M,(X),
Vx € E, we get a finite disjoint collection {C;} of compact subsets of X \ K and
{x;} € E, with ||Ix;|| < 1, Vi, such that [¥ {u(C;).x;>| > e. This means there
is a collection { £} C C,(X), 0 < f < 1, Vi, supports of f’s mutually disjoint,
f =0 on K, Vi, such that |[u(f)| > ¢ where f = X f, ® x;. Now [ foll <
implies |u( f)| < &, which is a contradiction. This proves the result.

LEMMA 3. Let A be a norm-bounded, relatively countably compact subset of
(F',o(F',F)), where F = Cy(X,E) and F' = M/(X,E"), and assume that X is
a P-space. Then A is equicontinuous on (F, B).

ProoF. First we note that p € M,(X ) implies |u| € /'(X), since X is a P-
space [12, p. 467]. Given & > 0, we prove the existence of a finite subset
D C X such that |u/(X\D) < e, Vi € A. Suppose this is not true. Take a
p, € A and a finite set C; C X such that |, |(X\C|) < ¢/2. Wegetau, € 4
such that |, [(X\C}) > e. Take a finite subset C, of X, C, D C; such that
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|1, | (X \C,) < /2. Continuing this process we get a sequence {u,} C 4, and

an increasing sequence {C,} of finite subsets of X such that |p, [(X\C;) < &/2
for i > n and |p,|(X\C;) > ¢ for 1 < i< n~—1 Putting C; =« and
D, = C\C,_, (i = 1,2,...), we get

I, [(D,) = I, [(CNC,)) = Iy [((XNC,_ \NXNC,)) > /2.

Since {D,} is a disjoint sequence of finite subsets of X, for every n, there exists
a finite partition {Ag"): 1 < i< p,}of D,, and points {x,("): 1 < i< p,}inthe
closed unit ball of E such that

Pn () €
| (D) <l 2 X" @ x40 ) + 5

Since X is a P-space and {Ag"): 1 <i<p,(1 <n< o0)}isa countable
collection of disjoint finite subsets of X, 3 a disjoint collection of clopen
subsets {U,.("): 1<i<p, (1 <n< o)} of X such that U,.(”) D AE") and
,u"(x,(") ® x A,-(")) = un(x,(”) ® in(,,)), Vn, and Vi (this follows from the regularity
of p.,p € M(X,E'), x € E, and the fact that X is a P-space). Putting
L =3 ) Xym» We get |u, (f,)] > ¢/4, Vn and f, € Cy(X,E). For any
subset M C N, Ene‘an = fyy € Co(X,E) and || fy, |l < 1 (here again we are
using the fact that X is a P-space). The space H = {f,,;: M C N} with
topology induced by oF,F’), contains {fp: P C N, P finite} as a dense
subset-to prove this, ix M C N and put g,, = Xicq2 .. mnm /s this gives
lu(fyy — &)l < Iul(lfyy = 8w ll) = 0, by the dominated convergence theorem,
Vi € F'. Also A, considered as a set of continuous functions on H, with the
topology of pointwise convergence, is relatively countably compact, and so by
[7] there exists a subsequence of {p,, }, which again we denote by {u,, }, such that
{,) is convergent pointwise on H. Define A ,: 2V S KN, (M) = p(fy) Ttis
easy to verify that A’s are countably additive and lim A (M) = A(M) exists
VM C N. By Lemma 1, A, = A uniformly on 2N, Choose ng € N so large
that [A({n})| < ¢/10 and VP € 27, |A,(P) — A(P)| < ¢/10, Vn > ny. In par-
ticular, IAno({no}) — AM{np})l < ¢/10, and so ])\no({no})l < ¢/5, ie., }uno(f,,o)l
< ¢/5. This contradicts |u,(f,)| > /4, Vn. Using Lemma 2, we get the result.

ExaMpPLE 4. The condition that 4, in Lemma 3, be norm-bounded is
essential. Let E be the subspace of /; over reals, consisting of sequences with
only finite number of nonzero components with induced norm. In E" = [,
for every positive integer n, let y, have all components 0 except nth which is
equal ton. Put4 = {,}. Nowy, — 0in (E’,o(E’, E)), but, being unbounded,
is not equicontinuous. Thus E is Mackey but not strongly Mackey. Take
X = {x,), a one-point set. Then (C,(X, E), B;) is isometric isomorphic to E.
Thus Lemma 3 cannot hold without the assumption of norm-boundedness on
A.

THEOREM 5. If X is a P-space and E a normed space, then (C,(X,E),B,) is
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Mackey. If, in addition, E is complete (i.e., E is a Banach space) then
(Cy(X, E), By) is strongly Mackey.

ProOF. Let 4 be an absolutely convex, compact subset of (F',o(F’, F)),
where F = (C,(X,E),By), F' = M,(X,E’). Since the bounded subsets of
(Cy(X,E),By) are norm-bounded, the strong topology on M,(X,E’) is the
norm topology and so A is norm-bounded [8, 5.1, p. 141]. By Lemma 3, 4 is
equicontinuous. If E is a Banach space, then G = (C,(X,E), ||| is also a
Banach space and M,(X,E’) C G'. Thus if 4 is a relatively countably
compact subset of (M,(X,E"),a(M,(X,E")),C,(X,E)), then 4 is a relatively
countably compact subset of (G’,6(G’,G)) and so is norm-bounded. Lemma
3 now gives the result. This completes the proof.

REMARK 6. Our proof is different from the usual proof that the function
space be Mackey; the usual proof starts out with “gliding hump” argument
and then uses / trick [11]. This theorem generalizes the main result of [11].

We are grateful to the referee for making many useful suggestions.
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