STRICT TOPOLOGY AND P-SPACES

SURJIT SINGH KHURANA AND SEKI ALEXANDER CHOO

ABSTRACT. For a completely regular Hausdorff space X and a normed space E, let $C_b(X, E)$ be the space of all bounded continuous functions from X into E with strict topology β_0 . It is proved that if X is a P-space, $(C_b(X, E), \beta_0)$ is Mackey; if, in addition, E is complete, then $(C_b(X, E), \beta_0)$ is strongly Mackey.

In this paper, X denotes a completely regular Hausdorff space, K the field of real or complex numbers (we shall call them scalars), $C_b(X)$ all scalar-valued bounded continuous functions on X, $(E, \|\cdot\|)$ a normed space over K, $C_b(X, E)$ all bounded continuous functions from X into E, and E' the topological dual of X. We denote by $\langle \ , \ \rangle$ the natural bilinear form on $E \times E'$ or $E' \times E$. All vector spaces are taken over K. Let $\Re(X)$ be all Borel subsets of X and $M_t(X)$ all tight scalar-valued Borel measures on X [1], [4], [10]. We put

$$M_t(X,E') = \{\mu\colon \mathfrak{B}(X) \to E'\colon \mu \text{ finitely additive,}$$
 and $|\mu| \in M_t(X)$, where for any $B \in \mathfrak{B}(X), |\mu|(B) = \sup\{\sum |\langle \mu(B_i), x_i \rangle| \colon \{B_i\} \text{ a finitely Borel partition}$ of B and $\{x_i\} \subset E$ with $\|x_i\| \leqslant 1, \forall i\}\}$

(see [1], [4]). For a $\mu \in M_t(X, E')$ and $x \in E$, $\mu_x \colon \mathfrak{B}(X) \to K$, defined by $\mu_x(B) = \langle \mu(B), x \rangle$, $B \in \mathfrak{B}(X)$, is in $M_t(X)$. Integration with respect to a $\mu \in M_t(X, E')$ is taken in the sense of [1]. For a $\mu \in M_t(X, E')$ and $f \in C_b(X, E)$, $|\mu(f)| \leq |\mu| \ (||f||)$, where $||f|| \colon X \to R$, ||f||(x) = ||f(x)|| [1, p. 851].

The strict topology β_0 on $C_b(X, E)$ is defined by the family of seminorms $\|\cdot\|_h$, as h varies through all scalar-valued functions on X, vanishing at infinity, $\|f\|_h = \sup_{x \in X} \|h(x)f(x)\|, f \in C_b(X, E)$. It is proved in [1] that $C_b(X) \otimes E$ is dense in $(C_b(X, E), \beta_0), (C_b(X, E), \beta_0)' = M_t(X, E')$, and β_0 is the finest locally convex topology which coincides with compact-open topology on norm-bounded subsets of $C_b(X, E)$; also bounded subsets of $(C_b(X, E), \beta_0)$

Received by the editors January 13, 1976 and, in revised form, May 3, 1976 and July 30, 1976. AMS (MOS) subject classifications (1970). Primary 46G10; Secondary 28A25, 60B05.

Key words and phrases. Mackey and strongly Mackey locally convex spaces, strict topology, uniformly tight collection of measures.

are norm-bounded. (For E=K=R this result is proved in [9], but it immediately carries over to the case when E is a normed space since $M_t(X, E')$ is a closed subspace of the Banach space $(C_b(X, E), \|\cdot\|)'$.) Considering $M_t(X, E')$ a Banach space, with norm induced by $(C_b(X, E), \|\cdot\|)'$, we have $\|\mu\| = |\mu|(X), \forall \mu \in M_t(X, E')$ (it is a simple verification, cf. [4, p. 315]).

A completely regular Hausdorff space X is called a P-space if every G_{δ} set is open in X [2, p. 63]. In this paper we prove that if X is a P-space then $(C_b(X, E), \beta_0)$ is Mackey; if, in addition, E is complete, then E is strongly Mackey. A Hausdorff locally convex space G is called strongly Mackey if every $\sigma(G', G)$ relatively countably compact subset of G' is equicontinuous (we refer to [8] for locally convex spaces).

We first prove the following lemmas.

LEMMA 1. Let 2^N denote all subsets of N, with product topology. If $\lambda_n: 2^N \to K$ is a sequence of countably additive measures (this implies they are continuous) and $\lim \lambda_n(M) = \lambda(M)$ exists $\forall M \subset N$, then $\lambda_n \to \lambda$ uniformly on 2^N .

PROOF. This is a particular case of [6, Lemma 1]. To prove this we have only to note that by Osgood's theorem [5, p. 86], the sequence $\{\lambda_n\}$ is equicontinuous at some point of 2^N . For completeness we give details.

Since $\{0,1\}$ is a topological group, with discrete topology $(1+1=0, \mod 2)$, $G=2^N=\{0,1\}^N$, with product topology, is also a topological group, which we write additively with neutral element 0. Fix $\epsilon > 0$ and suppose λ_n 's are equicontinuous at $p \in G$. There exist a 0-nbd

$$V = \left(\prod_{i=1}^{m} \xi_{i}\right) \left(\prod_{j=m+1}^{\infty} J_{j}\right),\,$$

where $\xi_i = \{0\}$, $1 \leqslant i \leqslant m$, and $J_j = \{0, 1\}$, $m + 1 \leqslant j < \infty$, such that

$$|\lambda_n(p+V)-\lambda_n(p)|<\varepsilon/8, \quad \forall n.$$

Let $p=(p_1,p_2,\ldots,p_m,p_{m+1},\ldots)$ and put $p'=(p_1,p_2,\ldots,p_m,0,0,\ldots)$ and $p''=(0,0,\ldots,0,p_{m+1},p_{m+2},\ldots)$. p=p'+p''. Fix $v\in V$ and take $v'\in V$ such that p''+v'=v. From (*) we get $|\lambda_n(p'+p''+v')-\lambda_n(p'+p'')|<\varepsilon/8$ and so $|\lambda_n(p')+\lambda_n(v)-\lambda_n(p')-\lambda_n(p'')|<\varepsilon/8$ (note λ_n 's are additive). This gives $|\lambda_n(v)-\lambda_n(p'')|<\varepsilon/8$, $\forall v\in V$. In particular, $|\lambda_n(p'')|<\varepsilon/8$. Combining these results we get $|\lambda_n(V)|<\varepsilon/4$, $\forall n$. Since $\mathfrak{A}_0=\{1,2,\ldots,m\}\cap 2^N$ (i.e., subsets of $\{1,2,\ldots,m\}$) is finite there exists a positive integer n_0 such that $|\lambda_n(A)-\lambda(A)|<\varepsilon/4$, $\forall n\geqslant n_0$ and $A\in\mathfrak{A}_0$. Take $q\in 2^N$, $q=(q_1,q_2,\ldots,q_m,q_{m+1},\ldots)$ and put $q'=(q_1,q_2,\ldots,q_m,0,0,\ldots)$, $q''=(0,0,\ldots,0,q_{m+1},q_{m+2},\ldots)$. Then q''+q'=q and $q''\in V$. For $n\geqslant n_0$,

$$\begin{split} |\lambda_n(q) - \lambda(q)| & \leq |\lambda_n(q') - \lambda(q')| + |\lambda_n(q'') - \lambda(q'')| \\ & \leq \varepsilon/4 + |\lambda_n(q'')| + |\lambda(q'')| \leq \varepsilon/4 + \varepsilon/4 + \varepsilon/4 < \varepsilon. \end{split}$$

This proves the result.

A subset $A \subset M_t(X, E')$ is said to be uniformly tight if given $\varepsilon > 0$, there exists a compact subset $K \subset X$ such that $|\mu|(X \setminus K) \leq \varepsilon$, $\forall \mu \in A$.

LEMMA 2. A subset $A \subset M_t(X, E')$ is β_0 -equicontinuous iff A is uniformly tight and norm-bounded.

PROOF. Let A be norm-bounded and uniformly tight. Put $\alpha_0 = \sup\{\|\mu\|: \mu \in A\}$. Since β_0 -topology is the finest locally convex topology, coinciding with compact-open topology on norm-bounded subsets of $C_b(X, E)$, it is enough to prove that for any k > 0 there exists a compact subset K of X and some $\eta > 0$ such that

$$Z = \{ f \in C_b(X, E) \colon ||f|| \leqslant k, ||f||_K \leqslant \eta \}$$
$$\subset \{ g \in C_b(X, E) \colon |\mu(g)| \leqslant 1, \forall \mu \in A \}.$$

By uniform tightness of A, there exists a compact $K \subset X$ such that $|\mu|(X \setminus K) < 1/(2k+1)$, $\forall \mu \in A$. Take $\eta = 1/2(1+\alpha_0)$. For an $f \in Z$ and $\mu \in A$,

$$|\mu(f)| \le \int ||f|| \, d|\mu| = \int_K ||f|| \, d|\mu| + \int_{X \setminus K} ||f|| \, d|\mu|$$

$$\le \alpha_0/2(1 + \alpha_0) + k/(2k + 1) \le 1.$$

This proves A is β_0 -equicontinuous.

Conversely, if $A \subset M_t(X, E')$ is β_0 -equicontinuous then A is norm-bounded, since $\beta_0 \leq \|\cdot\|$ on $C_b(X, E)$. Fix $\epsilon > 0$. There exists a scalar-valued function φ on X such that

$${f \in C_b(X, E): ||f\varphi|| \leqslant 1} \subset {g \in C_b(X, E): |\mu(g)| \leqslant 1, \forall \mu \in A}.$$

Take a compact set K, in X, with the property that $K \supset \{x \in X : |\varphi(x)| \ge \varepsilon\}$. If $|\mu|(X \setminus K) > \varepsilon$, for some $\mu \in A$, then, by using the fact that $\mu_x \in M_t(X)$, $\forall x \in E$, we get a finite disjoint collection $\{C_i\}$ of compact subsets of $X \setminus K$ and $\{x_i\} \subset E$, with $||x_i|| \le 1$, $\forall i$, such that $|\sum \langle \mu(C_i), x_i \rangle| > \varepsilon$. This means there is a collection $\{f_i\} \subset C_b(X)$, $0 \le f_i \le 1$, $\forall i$, supports of f_i 's mutually disjoint, $f_i = 0$ on K, $\forall i$, such that $|\mu(f)| > \varepsilon$, where $f = \sum f_i \otimes x_i$. Now $||f\varphi|| \le \varepsilon$ implies $|\mu(f)| \le \varepsilon$, which is a contradiction. This proves the result.

LEMMA 3. Let A be a norm-bounded, relatively countably compact subset of $(F', \sigma(F', F))$, where $F = C_b(X, E)$ and $F' = M_t(X, E')$, and assume that X is a P-space. Then A is equicontinuous on (F, β_0) .

PROOF. First we note that $\mu \in M_l(X)$ implies $|\mu| \in l^1(X)$, since X is a P-space [12, p. 467]. Given $\varepsilon > 0$, we prove the existence of a finite subset $D \subset X$ such that $|\mu|(X \setminus D) < \varepsilon$, $\forall \mu \in A$. Suppose this is not true. Take a $\mu_1 \in A$ and a finite set $C_1 \subset X$ such that $|\mu_1|(X \setminus C_1) < \varepsilon/2$. We get a $\mu_2 \in A$ such that $|\mu_2|(X \setminus C_1) \geqslant \varepsilon$. Take a finite subset C_2 of X, $C_2 \supset C_1$ such that

 $|\mu_2|(X\setminus C_2) < \varepsilon/2$. Continuing this process we get a sequence $\{\mu_n\} \subset A$, and an increasing sequence $\{C_n\}$ of finite subsets of X such that $|\mu_n|(X\setminus C_i) < \varepsilon/2$ for $i \ge n$ and $|\mu_n|(X\setminus C_i) \ge \varepsilon$ for $1 \le i \le n-1$. Putting $C_0 = \emptyset$ and $D_i = C_i \setminus C_{i-1}$ (i = 1, 2, ...), we get

$$|\mu_n|(D_n) = |\mu_n|(C_n \setminus C_{n-1}) = |\mu_n|((X \setminus C_{n-1}) \setminus (X \setminus C_n)) \geqslant \varepsilon/2.$$

Since $\{D_n\}$ is a disjoint sequence of finite subsets of X, for every n, there exists a finite partition $\{A_i^{(n)}: 1 \le i \le p_n\}$ of D_n , and points $\{x_i^{(n)}: 1 \le i \le p_n\}$ in the closed unit ball of E such that

$$|\mu_n|(D_n) < |\mu_n| \Big(\sum_{i=1}^{p_n} x_i^{(n)} \otimes \chi_{A_i^{(n)}}\Big) + \frac{\varepsilon}{4}.$$

Since X is a P-space and $\{A_i^{(n)}: 1 \le i \le p_n \ (1 \le n < \infty)\}$ is a countable collection of disjoint finite subsets of X, \exists a disjoint collection of clopen subsets $\{U_i^{(n)}: 1 \leqslant i \leqslant p_n \ (1 \leqslant n < \infty)\}$ of X such that $U_i^{(n)} \supset A_i^{(n)}$ and $\mu_n(x_i^{(n)} \otimes \chi_{A_i^{(n)}}) = \mu_n(x_i^{(n)} \otimes \chi_{U_i^{(n)}}), \ \forall n, \text{ and } \forall i \text{ (this follows from the regularity }$ of μ_x , $\mu \in M_t(X, E')$, $x \in E$, and the fact that X is a P-space). Putting $f_n = \sum_{i=1}^{p_n} \chi_i^{(n)} \otimes \chi_{U_i^{(n)}}$, we get $|\mu_n(f_n)| > \varepsilon/4$, $\forall n$ and $f_n \in C_b(X, E)$. For any subset $M \subset N$, $\sum_{n \in M} f_n = f_M \in C_b(X, E)$ and $||f_M|| \leq 1$ (here again we are using the fact that X is a P-space). The space $H = \{f_M : M \subset N\}$ with topology induced by $\sigma(F, F')$, contains $\{f_P: P \subset N, P \text{ finite}\}$ as a dense subset-to prove this, fix $M \subset N$ and put $g_m = \sum_{i \in \{1,2,\ldots,m\} \cap M} f_i$; this gives $|\mu(f_M - g_m)| \le |\mu|(||f_M - g_m||) \to 0$, by the dominated convergence theorem, $\forall \mu \in F'$. Also A, considered as a set of continuous functions on H, with the topology of pointwise convergence, is relatively countably compact, and so by [7] there exists a subsequence of $\{\mu_n\}$, which again we denote by $\{\mu_n\}$, such that $\{\mu_n\}$ is convergent pointwise on H. Define $\lambda_n: 2^N \to K$, $\lambda_n(M) = \mu_n(f_M)$. It is easy to verify that λ_n 's are countably additive and $\lim \lambda_n(M) = \lambda(M)$ exists $\forall M \subset N$. By Lemma 1, $\lambda_n \to \lambda$ uniformly on 2^N . Choose $n_0 \in N$ so large that $|\lambda(\{n\})| < \varepsilon/10$ and $\forall P \in 2^N$, $|\lambda_n(P) - \lambda(P)| < \varepsilon/10$, $\forall n \ge n_0$. In particular, $|\lambda_{n_0}(\{n_0\}) - \lambda(\{n_0\})| < \varepsilon/10$, and so $|\lambda_{n_0}(\{n_0\})| < \varepsilon/5$, i.e., $|\mu_{n_0}(f_{n_0})|$ $< \varepsilon/5$. This contradicts $|\mu_n(f_n)| > \varepsilon/4$, $\forall n$. Using Lemma 2, we get the result. Example 4. The condition that A, in Lemma 3, be norm-bounded is essential. Let E be the subspace of l_1 over reals, consisting of sequences with only finite number of nonzero components with induced norm. In $E' = l_{\infty}$, for every positive integer n, let y_n have all components 0 except nth which is equal to n. Put $A = \{y_n\}$. Now $y_n \to 0$ in $(E', \sigma(E', E))$, but, being unbounded, is not equicontinuous. Thus E is Mackey but not strongly Mackey. Take $X = \{x_0\}$, a one-point set. Then $(C_b(X, E), \beta_0)$ is isometric isomorphic to E. Thus Lemma 3 cannot hold without the assumption of norm-boundedness on A.

THEOREM 5. If X is a P-space and E a normed space, then $(C_b(X, E), \beta_0)$ is

Mackey. If, in addition, E is complete (i.e., E is a Banach space) then $(C_b(X, E), \beta_0)$ is strongly Mackey.

PROOF. Let A be an absolutely convex, compact subset of $(F', \sigma(F', F))$, where $F = (C_b(X, E), \beta_0)$, $F' = M_t(X, E')$. Since the bounded subsets of $(C_b(X, E), \beta_0)$ are norm-bounded, the strong topology on $M_t(X, E')$ is the norm topology and so A is norm-bounded [8, 5.1, p. 141]. By Lemma 3, A is equicontinuous. If E is a Banach space, then $G = (C_b(X, E), \|\cdot\|)$ is also a Banach space and $M_t(X, E') \subset G'$. Thus if A is a relatively countably compact subset of $(M_t(X, E'), \sigma(M_t(X, E')), C_b(X, E))$, then A is a relatively countably compact subset of $(G', \sigma(G', G))$ and so is norm-bounded. Lemma 3 now gives the result. This completes the proof.

REMARK 6. Our proof is different from the usual proof that the function space be Mackey; the usual proof starts out with "gliding hump" argument and then uses l_{∞} trick [11]. This theorem generalizes the main result of [11].

We are grateful to the referee for making many useful suggestions.

REFERENCES

- 1. R. A. Fontenot, Strict topologies for vector-valued functions, Canad. J. Math. 26 (1974), 841-853. MR 50 #961.
- 2. L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, N.J., 1960. MR 22 #6994.
- 3. R. Haydon, On compactness in spaces of measures and measure compact spaces, Proc. London Math. Soc. (3) 29 (1974), 1-16. MR 50 #14190.
- **4.** A. Katsaras, *Spaces of vector measures*, Trans. Amer. Math. Soc. **206** (1975), 313-328. MR **51** #1364.
- 5. J. L. Kelley, I. Namioka et al., *Linear topological spaces*, Van Nostrand, Princeton, N.J., 1963. MR 29 #3851.
- 6. S. S. Khurana, Convergent sequences of regular measures, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 37-42.
- 7. J. D. Pryce, A device of R. J. Whitley's applied to pointwise compactness in spaces of continuous functions, Proc. London Math. Soc. (3) 23 (1971), 532-546. MR 45 #5729.
 - 8. H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966. MR 33 #1689.
- 9. F. D. Sentilles, Bounded continuous functions on a completely regular space, Trans. Amer. Math. Soc. 168 (1972), 311-336. MR 45 #4133.
- 10. V. S. Varadarajan, *Measures on topological spaces*, Mat. Sb. 55 (97) (1961), 35-100; English transl., Amer. Math. Soc. Transl. (2) 48 (1965), 161-228. MR 26 #6342.
 - 11. R. F. Wheeler, The strict topology for P-spaces, Proc. Amer. Math. Soc. 41 (1973), 466-472.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOWA, IOWA CITY, IOWA 52242

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, SHEBOYGAN COUNTY CENTER, SHEBOYGAN, WISCONSIN 53801