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ON THE SPECTRAL TYPE OF ONE-PARAMETER GROUPS

ON OPERATOR ALGEBRAS1

DAVID E. EVANS

Abstract. We show that two unitary representations of R of very different

spectral type can give rise to the same one-parameter group of "-automor-

phisms of a C*-algebra.

Arveson [1] has introduced a spectral theory for automorphism groups on

C*-algebras. However, little seems to be known about the spectral type of

such groups.

The fact that two unitary representations of R of very different spectral

properties can give rise to the same one-parameter group of automorphisms

of a C*-algebra is not surprising as can be seen by the following simple

example, due to the referee:

Let H = /2(N) and let h G B(H) be the compact positive operator "multi-

plication by {l/«}"-i'• Let {r„}"_i be an enumeration of the rationals in [0,

1] and let k G B(H) be the positive operator "multiplication by {/„}"=i".

Then, the operator (h ® 1) + (1 <8> k) on H ® H has spectrum equal to [0,

2] while h <8> 1 has spectrum equal to {1/'n}™=x u {0}. However, the unitary

representations of R on H ® H defined by:

t _> e'<(A®l> = gllh ®  j

and

l _h> e«(A®l + l®fc) _   £ilh  0 £itk

give rise to the same one-parameter group of automorphisms of the C*-alge-

bra B(H)® 1.

The purpose of this paper is to show the surprising result that one can go

from singular spectrum to absolutely continuous spectrum.

Let Hea bounded selfadjoint operator on a hilbert space H. Then, as in

the above example, the operators h <8> 1 and (h ® 1) - (1 <8> h) (on H <8> H)

give rise to the same one-parameter group of ""-automorphisms of the C*-al-

gebra B(H) ® 1. In fact, if A denotes the C*-algebra generated by h and 1,

h <8> 1 and (h <8> 1) - (1 ® h) give rise to the same one-parameter group of
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""-automorphisms of the spatial C*-tensor product B(H)®A, and both

unitary groups e''<*®'>' and e'"(A«.i -1 <»/»/ lie in this aigebra 0ur main result is

thus a consequence of

Proposition 1. There exists a bounded self adjoint operator h on a hilbert

space H such that:

(i) h has singularly continuous spectrum.

(ii) (h <8> 1) — (1 <8> h) has absolutely continuous spectrum.

Proof. Let ft be a positive Radon measure on R which has compact

support and is singularly continuous with respect to Lebesgue measure. Let

H = L2(R, p.), and h E B(H) be the bounded, selfadjoint operator "multi-

plication by the independent variable". To calculate the spectral type of

(h ® 1) - (1 ® h) we first observe that H <8> H is naturally identified with

L2(R, p. X p), and that under this identification, (h <£> 1) - (1 <8> h) becomes

the operator "multiplication by (x - y)". It is also clear that the spectral

resolution A —» Ex of this operator is given by the multiplication operators:

„ ,      .      / 1     if x - y < A,

Moreover since p X p is a finite measure, one sees that (h ® 1) — (1 ® h)

has absolutely continuous spectrum if the spectral measure determined by the

constant function 1 on R2 is absolutely continuous with respect to Lebesgue

measure. It is seen that this measure is p * p.; where if v is any Borel measure

on R, we denote by v the measure v(E) =v(— E). If v is absolutely continu-

ous with respect to Lebesgue measure, then so is v * v. The converse is false,

as the following proposition shows, and establishes our main result:

Proposition 2. There exists a positive Radon measure p on R, with compact

support, such that p * p. is absolutely continuous with respect to Lebesgue

measure, whilst p itself is a singular measure.

Proof. According to Salem [2, p. 265], for each a E (0, 1), and q > 2/a,

there exists a positive Radon measure p on R, supported by a compact subset

K of [0, 1] having Hausdorff dimension a such that p E Lq. This implies that

K is of Lebesgue measure zero, and p is a singular measure. Choose q = 4,

and { < a < 1. Then (p * /!)*= \p\2 E L2. Hence, p * p is absolutely con-

tinuous with respect to Lebesgue measure, but ju, itself is a singular measure.

We would like to thank the referee for helpful comments with the presenta-

tion of the above results, and for the first example.
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