UNBOUNDED DERIVATIONS OF GROUP C*- ALGEBRAS

CHRISTOPHER LANCE AND ASSADOLLAH NIKNAM¹

ABSTRACT. We describe a construction which yields unbounded derivations and strongly continuous one-parameter automorphism groups of certain group C^* -algebras. As an application, we show that a simple C^* -algebra can have an automorphism group which is not approximately inner.

1. A strongly continuous one-parameter automorphism group of a C^* -algebra $\mathfrak A$ is a continuous homomorphism $t\mapsto \alpha_t$ from the real numbers into the group of *-automorphisms of $\mathfrak A$ equipped with the topology of simple norm convergence. We say that (α_t) is approximately inner if there is a sequence (H_n) of selfadjoint elements of $\mathfrak A$ such that $\|e^{itH_n}Ae^{-itH_n}-\alpha_t(A)\|\to 0$ uniformly on compact subsets of $\mathbf R$, for each A in $\mathfrak A$. Strongly continuous one-parameter automorphism groups of UHF algebras have been investigated in a recent series of papers by Powers and Sakai [5]–[8], who conjecture that such groups are always approximately inner.

In this paper we show how to construct strongly continuous automorphism groups in certain group C^* -algebras which are not approximately inner. In particular, the construction works when the group is the free group on two generators. The reduced C^* -algebra of this group is simple [4], so our results show that a simple C^* -algebra with identity can, in general, have strongly continuous one-parameter automorphism groups which are not approximately inner, in contrast to the Powers-Sakai conjecture for the UHF case.

We should like to thank R. Powers and S. Sakai for supplying us with preprints of their work.

2. Let G be a (discrete) group. For h in G let ε_h be the characteristic function of $\{h\}$, so that $\{\varepsilon_h \colon h \in G\}$ is an orthonormal basis for $l^2(G)$. For g in G define a unitary operator U_g on $l^2(G)$ by $U_g \varepsilon_h = \varepsilon_{gh}$. Let \mathfrak{A}_0 be the set of all finite linear combinations of elements of $\{U_g \colon g \in G\}$. The reduced C^* -algebra $C^*_r(G)$ of G is the norm closure of \mathfrak{A}_0 in the algebra of all bounded operators on $l^2(G)$. The (full) C^* -algebra $C^*(G)$ of G is the enveloping C^* -algebra (see §2.7 of [2]) of the convolution group algebra $l^1(G)$.

Define a state ω of $C_r^*(G)$ by

Received by the editors March 16, 1976.

AMS (MOS) subject classifications (1970). Primary 46L05.

¹ Research supported by a grant from MOSOI, Iran.

$$\omega(A) = \langle A \varepsilon_{\rho}, \varepsilon_{\rho} \rangle,$$

where e is the identity element of G. If $A = \sum \gamma_g U_g \in \mathfrak{A}_0$, then $\omega(A) = \gamma_e$. Let λ be a homomorphism from G to the additive group of real numbers, and define a linear operator δ_{λ} on \mathfrak{A}_0 by

$$\delta_{\lambda}(\sum \gamma_{g} U_{g}) = \sum i\lambda(g)\gamma_{g} U_{g}.$$

For g, h in G we have

$$\begin{split} \delta_{\lambda}(U_g \, U_h) &= \, \delta_{\lambda}(U_{gh}) \, = \, i \lambda(gh) U_g \, U_h \, = \, i \lambda(g) U_g \, U_h \, + \, i \lambda(h) U_g \, U_h \\ &= \, \delta_{\lambda}(U_g) U_h \, + \, U_g \, \delta_{\lambda}(U_h), \end{split}$$

from which it follows that $\delta_{\lambda}(AB) = \delta_{\lambda}(A)B + A\delta_{\lambda}(B)$ for all A, B in \mathfrak{A}_0 . Also

$$\delta_{\lambda}(U_{g}^{*}) = \delta_{\lambda}(U_{g^{-1}}) = i\lambda(g^{-1})U_{g-1} = -i\lambda(g)U_{g}^{*} = \delta_{\lambda}(U_{g})^{*},$$

so that $\delta_{\lambda}(A^*) = \delta_{\lambda}(A)^*$ for all A in \mathfrak{U}_0 . Thus δ_{λ} is a derivation of $C_r^*(G)$. (By a derivation δ of a C^* -algebra \mathfrak{U} we mean a linear mapping from a dense *-subalgebra $\mathfrak{D}(\delta)$ of \mathfrak{U} into \mathfrak{U} such that

$$\delta(AB) = \delta(A)B + A\delta(B) \qquad (A, B \in \mathfrak{D}(\delta)),$$

$$\delta(A^*) = \delta(A)^* \qquad (A \in \mathfrak{D}(\delta)).$$

In this we differ slightly from the usage of Bratteli and Robinson [1], who take δ to be skew-adjoint rather than selfadjoint.)

THEOREM 1. For λ in Hom (G, \mathbf{R}) , δ_{λ} is a closable derivation of $C_r^*(G)$ whose closure $\overline{\delta}_{\lambda}$ is the infinitesimal generator of a strongly continuous one-parameter group of automorphisms (α_t^{λ}) of $C_r^*(G)$. If $\lambda \neq 0$ then δ_{λ} is unbounded and (α_t^{λ}) is not approximately inner.

PROOF. For $A = \sum \gamma_g U_g$ in \mathfrak{A}_0 , we have $\omega(\delta_{\lambda}(A)) = i\lambda(e)\gamma_e = 0$. For g in G the power series

$$\sum_{n\geqslant 0} \frac{z^n}{n!} \delta_{\lambda}^n(U_g) = \sum_{n\geqslant 0} \frac{(i\lambda(g)z)^n}{n!} U_g$$

has nonzero (in fact, infinite!) radius of convergence, so that \mathfrak{A}_0 is a dense set of analytic elements for δ_λ . It follows from Theorem 4 of [1] that δ_λ is closable and that $\overline{\delta}_\lambda$ is the infinitesimal generator of a strongly continuous one-parameter automorphism group (α_i^{λ}) , as required.

Suppose now that $\lambda \neq 0$, so that $\lambda(g) > 0$ for some g in G. For any positive integer n we have $\delta_{\lambda}(U_{g^n}) = in\lambda(g)U_{g^n}$, from which it is clear that δ_{λ} is unbounded. If $A = U_g^*$ then

$$-iA^*\delta_{\lambda}(A) = \lambda(g^{-1})U_gU_g^* = -\lambda(g)I.$$

If (α_t^{λ}) were approximately inner, then by Theorem 2.3 of [5] there would be a ground state ρ for (α_t^{λ}) . But by Theorem 2.2 of [5] such a state has the property that $-i\rho(A^*\delta_{\lambda}(A)) \geqslant 0$ $(A \in \mathfrak{A}_0)$. This is clearly impossible for $A = U_g^*$, so we conclude that (α_t^{λ}) is not approximately inner. Notice that the automorphisms α_t^{λ} are induced by the unitary group on

 $l^2(G)$ given by $\varepsilon_h \mapsto e^{it\lambda(h)}\varepsilon_h$. Thus $\dot{\mathfrak{U}}_0$ is invariant under α_t^{λ} $(t \in \mathbf{R})$.

3. We now prove the analogous result to Theorem 1 for the full group C^* algebra $C^*(G)$. We shall need the following lemma, which is a consequence of Theorem 1 of [1] (see also Theorem 4.1 of [5]).

Lemma 2. Let δ be a derivation of a C^* -algebra $\mathfrak A$ with domain $\mathfrak D(\delta)$ such that some extension δ of δ is the infinitesimal generator of a strongly continuous oneparameter group of automorphisms of \mathfrak{A} . Suppose that the two sets $\{\delta(A) \pm A : A\}$ $\in \mathfrak{D}(\delta)$ are dense in \mathfrak{A} . Then $\hat{\delta}$ is the closure of δ .

PROOF. Since $\hat{\delta}$ is closed, δ is certainly closable. By Theorem 1 of [1],

$$\|\hat{\delta}(A) - rA\| \geqslant |r| \|A\| \qquad (r \in \mathbf{R}, A \in \mathfrak{D}(\hat{\delta})).$$

For any B in $\mathfrak A$ we can find a sequence (A_n) in $\mathfrak D(\delta)$ such that $\delta(A_n) + A_n$ \rightarrow B. Since $||A_m - A_n|| \le ||\delta(A_m - A_n) + (A_m - A_n)||$, (A_n) is a Cauchy sequence with limit A, say. Then $\delta(A_n) \to B - A$, so $A \in \mathfrak{D}(\overline{\delta})$, $\overline{\delta}(A) = B - A$ and thus $B = \overline{\delta}(A) + A$. Hence we have

$$\|\delta(A) - rA\| \geqslant |r| \|A\| \qquad (r \in \mathbf{R}, A \in \mathfrak{D}(\overline{\delta})),$$
$$\{\overline{\delta}(A) + A \colon A \in \mathfrak{D}(\overline{\delta})\} = \mathfrak{U}$$

and (similarly) $\{\bar{\delta}(A) - A \colon A \in \mathfrak{N}(\bar{\delta})\} = \mathfrak{A}$.

It follows from Theorem 1 of [1] that $\bar{\delta}$ is the infinitesimal generator of a strongly continuous one-parameter group of automorphisms of A, which must be the same as that generated by $\hat{\delta}$, so that $\bar{\delta} = \hat{\delta}$.

THEOREM 3. For λ in Hom (G, \mathbf{R}) , δ_{λ} is a closable derivation of $C^*(G)$ whose closure $\hat{\delta}_{\lambda}$ is the infinitesimal generator of a strongly continuous one-parameter group of automorphisms $(\hat{\alpha}_t^{\lambda})$ of $C^*(G)$. If $\lambda \neq 0$ then δ_{λ} is unbounded and $(\hat{\alpha}_t^{\lambda})$ is not approximately inner.

PROOF. As noted at the end of §2, \mathfrak{A}_0 is invariant under the automorphisms α_t^{λ} . If p is any C*-seminorm on \mathfrak{A}_0 then the composite mapping $p\alpha_t^{\lambda}$ is also a C^* -seminorm. The $C^*(G)$ -norm on \mathfrak{A}_0 is, by definition, the supremum of all such C*-seminorms, and it follows that each of the automorphisms α_t^{λ} is isometric for this norm. Thus (α_t^{λ}) extends by continuity to a strongly continuous one-parameter automorphism group $(\hat{\alpha}_t^{\lambda})$ of $C^*(G)$, whose infinitesimal generator $\hat{\delta}_{\lambda}$ is clearly an extension of δ_{λ} . For $A = \sum \gamma_{g} U_{g}$ in \mathfrak{A}_{0} , we have

$$\delta_{\lambda}(A) \pm A = \sum (i\lambda(g) \pm 1)\gamma_{g} U_{g}.$$

Since $i\lambda(g) \pm 1$ cannot be zero it is clear that the range of $\delta_{\lambda} \pm 1$ is the whole of \mathfrak{A}_0 , and it follows from Lemma 2 that δ_{λ} is closable, with closure $\hat{\delta}_{\lambda}$.

We already know that δ_{λ} is unbounded if $\lambda \neq 0$. To see that $(\hat{\alpha}_{t}^{\lambda})$ is not approximately inner, let π denote the canonical projection (i.e. the quotient map) from $C^{*}(G)$ onto $C_{r}^{*}(G)$. Then the restriction of π to \mathfrak{A}_{0} is the identity map, and $\pi\hat{\alpha}_{t}^{\lambda} = \alpha_{t}^{\lambda}\pi$. Suppose there is a sequence (H_{n}) of selfadjoint elements of $C^{*}(G)$ with $\|e^{itH_{n}}Ae^{-itH_{n}} - \hat{\alpha}_{t}^{\lambda}(A)\| \to 0$ ($A \in C^{*}(G)$). Then $\|e^{it\pi(H_{n})}\pi(A)e^{-it\pi(H_{n})} - \alpha_{t}^{\lambda}(\pi(A))\| \to 0$, and it would follow that (α_{t}^{λ}) was approximately inner, contradicting Theorem 1. Thus $(\hat{\alpha}_{t}^{\lambda})$ is not approximately inner.

4. When is Hom $(G, \mathbf{R}) \neq (0)$? To answer this question, we observe first that, since \mathbf{R} is abelian, the commutator subgroup [G, G] of G must be contained in the kernel of every element of Hom (G, \mathbf{R}) and so there is a natural surjection Hom $(G, \mathbf{R}) \mapsto \text{Hom } (G/[G, G], \mathbf{R})$. Thus the problem is reduced to the case where G is abelian.

PROPOSITION 4. Hom $(G, \mathbf{R}) = 0$ if and only if G/[G, G] is a torsion group.

PROOF. As explained above, we may replace G by G/[G, G] and suppose that G is abelian. If G is a torsion group then (since \mathbf{R} is torsion-free) it is clear that Hom $(G, \mathbf{R}) = (0)$. Suppose that G is not a torsion group, so that there is an element h of G of infinite order. Then h freely generates an infinite cyclic subgroup H of G, and we can certainly choose a nonzero homomorphism λ from H into \mathbf{R} . However, \mathbf{R} is an injective object in the category of abelian groups (since it is a divisible group) and so λ extends to a nonzero homomorphism from G to G. Thus Hom G to G.

5. Comments and examples. Consider first the case where G is abelian. If we regard the element $\sum \gamma_g U_g$ of \mathfrak{A}_0 as the Fourier series of the function $\chi \mapsto \sum \gamma_g \chi(g)$ ($\chi \in \hat{G}$) on the compact dual group \hat{G} , acting by pointwise multiplication as a bounded operator on $L^2(\hat{G})$, then we can easily verify that the group algebras $C_r^*(G)$ and $C^*(G)$ are both isomorphic to the C^* -algebra $C(\hat{G})$ of all continuous complex-valued functions on \hat{G} . (In general, $C_r^*(G)$ and $C^*(G)$ are isomorphic if and only if G is amenable–see [3].) If $G = \mathbb{Z}$ (the additive group of integers) and λ is the inclusion map from \mathbb{Z} into \mathbb{R} then, under the isomorphism between $C^*(\mathbb{Z})$ and $C(\Gamma)$ (where Γ is the circle group), α_t^{λ} corresponds to the automorphism given by a rotation of Γ through $2\pi t$ and δ_{λ} corresponds (up to a scalar multiple) with ordinary differentiation of a function in $C(\Gamma)$.

For our second example we take G to be the free group on two generators. In this case it is clear that Hom $(G, \mathbf{R}) \neq (0)$. It has been shown by Powers [4] that $C_r^*(G)$ (which is not isomorphic to $C^*(G)$) is simple. By Theorem 1,

 $C_r^*(G)$ has strongly continuous one-parameter groups of automorphisms which are not approximately inner.

We remark in conclusion that our results do not cast any doubt on the validity of the Powers-Sakai conjecture, since a *UHF* algebra can never be the group C*-algebra (reduced or full) of a discrete group.

REFERENCES

- 1. O. Bratteli and D. Robinson, *Unbounded derivations of C*-algebras*, Comm. Math. Phys. 42 (1975), 253-268.
- 2. J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964. MR 30 # 1404.
- 3. F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Reinhold, New York and London, 1969. MR 40 #4776.
- **4.** R. T. Powers, Simplicity of the C*-algebra associated with the free group on two generators, Duke Math. J. **42** (1975), 151–156.
- 5. R. T. Powers and S. Sakai, Existence of ground states and KMS states for approximately inner dynamics, Comm. Math. Phys. 39 (1975), 273-288. MR 50 #15695.
 - 6. ——, Unbounded derivations in operator algebras, J. Functional Analysis 19 (1975), 81-95.
- 7. S. Sakai, On one-parameter subgroups of *-automorphisms on operator algebras and the corresponding unbounded derivations, Amer. J. Math. (to appear).
- 8. —, On commutative normal *-derivations. I, Comm. Math. Phys. (to appear); II, J. Functional Analysis 21 (1976), 203–208.

DEPARTMENT OF MATHEMATICS, MANCHESTER UNIVERSITY, MANCHESTER M13 9PL, ENGLAND (Current address of Christopher Lance)

Current address (Assadollah Niknam): Department of Mathematics, Faculty of Science, Joundishapour University, Ahwaz, Iran