MORE ON THE "ZERO-TWO" LAW

S. R. FOGUEL

ABSTRACT. The Ornstein-Sucheston "zero-two" law for Markov operators is extended, and its proof simplified.

Let (X, Σ, m) be a measure space with m(X) = 1. Let P be a linear operator on $L_{\infty}(X, \Sigma, m)$ satisfying

- (a) P1 = 1.
- (b) If $f \ge 0$ a.e. then $Pf \ge 0$ a.e.

The operator P is a Markov operator if it satisfies in addition

(c) If $f_n \downarrow 0$ a.e. then $Pf_n \rightarrow 0$ a.e.

The operator P is called ergodic and conservative if, in addition to (a), (b) and (c), it satisfies:

(d) If $0 \le f$ a.e. and $Pf \le f$ a.e. then f = const. a.e.

See [1] for discussion of these properties.

Let P_1 and P_2 satisfy (a) and (b). Define, as in [1, p. 54], their minimum $P_1 \wedge P_2$ by:

If $0 \le f \in L_{\infty}$ then

$$(P_1 \wedge P_2)f = \inf\{P_1g + P_2(f - g)|0 \le g \le f\}.$$

Then $P_1 \wedge P_2$ is again a linear operator on L_{∞} such that $(P_1 \wedge P_2)1 \leq 1$ and $(P_1 \wedge P_2)f \geq 0$ a.e. whenever $f \geq 0$ a.e.

Now

$$(P_1 \wedge P_2)1 = \inf\{P_1 g + P_2(1-g)|0 \le g \le 1\}$$

= 1 - \sup\{P_2 g - P_1 g|0 \le g \le 1\}.

Put f = 2g - 1: $0 \le g \le 1$ if and only if $-1 \le f \le 1$. Thus

(*)
$$(P_1 \wedge P_2)1 = 1 - \frac{1}{2} \sup\{P_2 f - P_1 f | -1 \le f \le 1\}.$$

Note that $P_1 \wedge P_2$ satisfy (c) if either P_1 or P_2 does.

Let k be a fixed integer and put $S_n = P^n \wedge P^{n+k}$. Now $P^{n+k} = S_n + R'_n = S_n P^k + R''_n = S_n (I + P^k)/2 + R_n$ where R'_n, R''_n and $R_n = \frac{1}{2} (R'_n + R''_n)$ are positive operators. Thus

$$P^{n_1+n_2+2k} = S_{n_1} P^{n_2+k} (I + P^k)/2 + R_{n_1} P^{n_2+k}$$

= $S_{n_2} S_{n_2} (I + P^k)^2 / 4 + R_{n_1,n_2}, \qquad R_{n_2,n_2} \ge 0.$

Repeat this argument r times to conclude:

Received by the editors January 12, 1976 and, in revised form, March 12, 1976. AMS (MOS) subject classifications (1970). Primary 47A35.

(1)
$$P^{n_1+n_2+\cdots+n_r+rk} = S_{n_1}S_{n_2}\cdots S_{n_r}(I+P^k)^r/2^r + R_{n_1,n_2,\ldots,n_r}, \qquad R_{n_1,n_2,\ldots,n_r} \geqslant 0.$$

Let n_1, n_2, \ldots, n_r be chosen and put $m = n_1 + \cdots + n_r + rk$; $T_1 = S_{n_1} \ldots S_{n_r}$; $U = R_{n_1, \ldots, n_r}$, then:

$$P^{2m} = T_1 P^m (I + P^k)^r / 2^r + U P^m$$

$$= T_1 P^m (I + P^k)^r / 2^r + U T_1 (I + P^k)^r / 2^r + U^2$$

$$= T_2 (I + P^k)^r / 2^r + U^2, \qquad T_2 \ge 0, \ U \ge 0.$$

Repeat this argument j times to conclude:

(2)
$$P^{jm} = T_i (I + P^k)' / 2^r + U^j, \quad T_i \ge 0, \ U \ge 0.$$

Finally, as in [3], note that

(3)
$$\frac{1}{2^{r}} \left\| T_{j} (I + P^{k})^{r} (I - P^{k}) \right\|$$

$$\leq \frac{1}{2^{r}} \sum_{s=0}^{r-1} \left| {r \choose s} - {r \choose s+1} \right| + \frac{1}{2^{r-1}} \leq \frac{\text{const.}}{\sqrt{r}} .$$

(The last estimate follows from the fact that $\binom{r}{s}$ increases for $0 \le s \le r/2$ and decreases for $r/2 \le s \le r$, it suffices to consider even integers, r.)

THEOREM I. Let P satisfy (a) and (b). If $||P^{n_0+k}-P^{n_0}|| < 2$, for some integer n_0 , then $\lim_{n\to\infty} ||P^{n+k}-P^n|| = 0$.

PROOF. Note that

$$\begin{split} S_{n_0} 1 &= 1 - \frac{1}{2} \sup \left\{ P^{n_0 + k} f - P^{n_0} f | -1 \le f \le 1 \right\} \\ &\ge 1 - \frac{1}{2} \| P^{n_0 + k} - P^{n_0} \| = \alpha > 0. \end{split}$$

Choose $n_1 = n_2 = \cdots = n_r = n_0$ then, by (1) and (2),

$$||U|| = ||U1|| = ||1 - S_{n_0}^r 1|| \le 1 - \alpha^n = \beta < 1.$$

Thus by (2) and (3),

$$||P^{jm}(I-P^k)|| \leq (\text{const.}/\sqrt{r}) + \beta^j.$$

Since $||P^n(I - P^k)||$ decreases with n, the theorem follows.

Our next result is the Ornstein-Sucheston "zero-two" law (see [3]).

THEOREM II. Let P^n satisfy (a), (b), (c), and (d) for every n. Then either

$$\sup\{P^{n+k}f - P^nf| - 1 \le f \le 1\} = 2 \ a.e.$$

or

$$\lim_{n \to \infty} \left(\sup \left\{ P^{n+k} f - P^n f | -1 \le f \le 1 \right\} \right) = 0 \ a.e.$$

PROOF. As in [2], define

$$h_n = \sup\{P^{n+k}f - P^nf| - 1 \le f \le 1\}$$

then

$$S_n 1 = 1 - \frac{h_n}{2}$$
, $0 \le h_n \le 2$, $h_n \ge h_{n+1}$ and $Ph_n \ge h_{n+1}$.

Thus $h_n \downarrow h$ where $Ph \geqslant h$. By (d) $h = \text{const.} = \alpha$. Now if $\alpha < 2$ then we may find integers n_1, \ldots, n_r with $S_{n_1} S_{n_2} \ldots S_{n_r} 1 \not\equiv 0$:

$$S_{n_1}S_{n_2}...S_nS_n1\uparrow (1-\frac{\alpha}{2})S_{n_1}S_{n_2}...S_n1 \not\equiv 0.$$

(We used (c) here.) Thus in equation (2), $U1 = R_{n_1, n_2, \ldots, n_r} 1 \not\equiv 1$. Let $g = \lim U^j 1$ (note that $1 \ge U1 \ge U^2 1 \ge \cdots$) then $g = Ug \le P^m g$. Since P^m satisfies (d), g = const. but then $S_{n_1} \ldots S_{n_r} g = 0$ and by our choice of n_1, \ldots, n_r we must have g = 0. Finally, by (3)

$$\left|P^{jm}\left(I-P^{k}\right)f\right| \leq \frac{\text{const.}}{\sqrt{r}} + 2R^{j}1.$$

Since the right-hand side tends to zero, independently of f, $-1 \le f \le 1$, and h_n is a monotone sequence, we must have $h_n \to 0$ a.e.

REMARK. Let us follow [3] and note that if P is in the 0-class and $u \in L_1$ then $||u(P^{n+k} - P^n)|| = \langle u, (P^{n+k} - P^n)f \rangle$ for some $-1 \leq f \leq 1$ thus $||u(P^{n+k} - P^n)|| \underset{n \to \infty}{\longrightarrow} 0$. Now the closure of $L_1(I - P^k)$ is

$$V = \left\{ V \in L_1 \langle v, g \rangle = 0 \text{ for all } g \in L_{\infty}, g = P^k g \right\}$$

by the Hahn Banach Theorem. Thus $||vP^n|| \to 0$ whenever $v \in V$. By (d) applied to P^k , $v \in V$ if and only if $v \in L_1$ and $\int v \, dm = 0$.

If P is induced by an invertible measure preserving transformation then $||uP^n|| = ||u||$ and P is necessarily in the 2-class.

If P is in the 2-class and the transition probabilities $P^n(x,\cdot)$ are defined, then

$$2 = \sup\{P^{n+k}f - P^nf| - 1 \le f \le 1\} \le ||P^{n+k}(x, \cdot) - P^n(x, \cdot)|| \le 2.$$

BIBLIOGRAPHY

- 1. S. R. Foguel, The ergodic theory of Markov processes, Van Nostrand Reinhold, New York, 1969. MR 41 #6299.
 - 2. _____, On the "zero-two" law, Israel J. Math. 10 (1971), 275-280. MR 45 #7808.
- 3. D. Ornstein and L. Sucheston, An operator theorem on L_1 convergence to zero with applications to Markov kernels, Ann. Math. Statist. 41 (1970), 1631–1639. MR 42 #6938.

INSTITUTE FOR ADVANCED STUDIES, HEBREW UNIVERSITY OF JERUSALEM, MOUNT SCOPUS, ISRAEL