MORE ON THE "ZERO-TWO" LAW

S. R. FOGUEL

Abstract. The Ornstein-Sucheston "zero-two" law for Markov operators is extended, and its proof simplified.

Let (X, Σ, m) be a measure space with $m(X)=1$. Let P be a linear operator on $L_{\infty}(X, \Sigma, m)$ satisfying
(a) $P 1=1$.
(b) If $f \geqslant 0$ a.e. then $P f \geqslant 0$ a.e.

The operator P is a Markov operator if it satisfies in addition
(c) If $f_{n} \downarrow 0$ a.e. then $P f_{n} \rightarrow 0$ a.e.

The operator P is called ergodic and conservative if, in addition to (a), (b) and (c), it satisfies:
(d) If $0 \leqslant f$ a.e. and $P f \leqslant f$ a.e. then $f=$ const. a.e.

See [1] for discussion of these properties.
Let P_{1} and P_{2} satisfy (a) and (b). Define, as in [1, p. 54], their minimum $P_{1} \wedge P_{2}$ by:

If $0 \leqslant f \in L_{\infty}$ then

$$
\left(P_{1} \wedge P_{2}\right) f=\inf \left\{P_{1} g+P_{2}(f-g) \mid 0 \leqslant g \leqslant f\right\}
$$

Then $P_{1} \wedge P_{2}$ is again a linear operator on L_{∞} such that $\left(P_{1} \wedge P_{2}\right) 1 \leqslant 1$ and $\left(P_{1} \wedge P_{2}\right) f \geqslant 0$ a.e. whenever $f \geqslant 0$ a.e.

Now

$$
\begin{aligned}
\left(P_{1} \wedge P_{2}\right) 1 & =\inf \left\{P_{1} g+P_{2}(1-g) \mid 0 \leqslant g \leqslant 1\right\} \\
& =1-\sup \left\{P_{2} g-P_{1} g \mid 0 \leqslant g \leqslant 1\right\}
\end{aligned}
$$

Put $f=2 g-1: 0 \leqslant g \leqslant 1$ if and only if $-1 \leqslant f \leqslant 1$. Thus

$$
\begin{equation*}
\left(P_{1} \wedge P_{2}\right) 1=1-\frac{1}{2} \sup \left\{P_{2} f-P_{1} f \mid-1 \leqslant f \leqslant 1\right\} \tag{*}
\end{equation*}
$$

Note that $P_{1} \wedge P_{2}$ satisfy (c) if either P_{1} or P_{2} does.
Let k be a fixed integer and put $S_{n}=P^{n} \wedge P^{n+k}$. Now $P^{n+k}=S_{n}+R_{n}^{\prime}$ $=S_{n} P^{k}+R_{n}^{\prime \prime}=S_{n}\left(I+P^{k}\right) / 2+R_{n}$ where $R_{n}^{\prime}, R_{n}^{\prime \prime}$ and $R_{n}=\frac{1}{2}\left(R_{n}^{\prime}+R_{n}^{\prime \prime}\right)$ are positive operators. Thus

$$
\begin{aligned}
P^{n_{1}+n_{2}+2 k} & =S_{n_{1}} P^{n_{2}+k}\left(I+P^{k}\right) / 2+R_{n_{1}} P^{n_{2}+k} \\
& =S_{n_{1}} S_{n_{2}}\left(I+P^{k}\right)^{2} / 4+R_{n_{1}, n_{2}}, \quad R_{n_{1}, n_{2}} \geqslant 0 .
\end{aligned}
$$

Repeat this argument r times to conclude:
Received by the editors January 12, 1976 and, in revised form, March 12, 1976. AMS (MOS) subject classifications (1970). Primary 47A35.

$$
\begin{align*}
P^{n_{1}+n_{2}+\cdots+n_{r}+r k}= & S_{n_{1}} S_{n_{2}} \ldots S_{n_{r}}\left(I+P^{k}\right)^{r} / 2^{r} \tag{1}\\
& +R_{n_{1}, n_{2}, \ldots, n_{r}}, \quad R_{n_{1}, n_{2}}, \ldots, n_{r} \geqslant 0 .
\end{align*}
$$

Let $n_{1}, n_{2}, \ldots, n_{r}$ be chosen and put $m=n_{1}+\cdots+n_{r}+r k ; T_{1}=$ $S_{n_{1}} \ldots S_{n_{r}} ; U=R_{n_{1}, \ldots, n_{r}}$, then:

$$
\begin{aligned}
P^{2 m} & =T_{1} P^{m}\left(I+P^{k}\right)^{r} / 2^{r}+U P^{m} \\
& =T_{1} P^{m}\left(I+P^{k}\right)^{r} / 2^{r}+U T_{1}\left(I+P^{k}\right)^{r} / 2^{r}+U^{2} \\
& =T_{2}\left(I+P^{k}\right)^{r} / 2^{r}+U^{2}, \quad T_{2} \geqslant 0, U \geqslant 0 .
\end{aligned}
$$

Repeat this argument j times to conclude:

$$
\begin{equation*}
P^{j m}=T_{j}\left(I+P^{k}\right)^{r} / 2^{r}+U^{j}, \quad T_{j} \geqslant 0, U \geqslant 0 \tag{2}
\end{equation*}
$$

Finally, as in [3], note that

$$
\begin{align*}
& \frac{1}{2^{r}}\left\|T_{j}\left(I+P^{k}\right)^{r}\left(I-P^{k}\right)\right\| \\
& \quad \leqslant \frac{1}{2^{r}} \sum_{s=0}^{r-1}\left|\binom{r}{s}-\binom{r}{s+1}\right|+\frac{1}{2^{r-1}} \leqslant \frac{\text { const. }}{\sqrt{r}} . \tag{3}
\end{align*}
$$

(The last estimate follows from the fact that $\binom{r}{s}$ increases for $0 \leqslant s \leqslant r / 2$ and decreases for $r / 2 \leqslant s \leqslant r$, it suffices to consider even integers, r.)

Theorem I. Let P satisfy (a) and (b). If $\left\|P^{n_{0}+k}-P^{n_{0}}\right\|<2$, for some integer n_{0}, then $\lim _{n \rightarrow \infty}\left\|P^{n+k}-P^{n}\right\|=0$.

Proof. Note that

$$
\begin{aligned}
S_{n_{0}} 1 & =1-\frac{1}{2} \sup \left\{P^{n_{0}+k} f-P^{n_{0}} \mid-1 \leqslant f \leqslant 1\right\} \\
& \geqslant 1-\frac{1}{2}\left\|P^{n_{0}+k}-P^{n_{0}}\right\|=\alpha>0
\end{aligned}
$$

Choose $n_{1}=n_{2}=\cdots=n_{r}=n_{0}$ then, by (1) and (2),

$$
\|U\|=\|U 1\|=\left\|1-S_{n_{0}}^{r} 1\right\| \leqslant 1-\alpha^{n}=\beta<1
$$

Thus by (2) and (3),

$$
\left\|P^{j m}\left(I-P^{k}\right)\right\| \leqslant(\text { const. } / \sqrt{r})+\beta^{j}
$$

Since $\left\|P^{n}\left(I-P^{k}\right)\right\|$ decreases with n, the theorem follows.
Our next result is the Ornstein-Sucheston "zero-two" law (see [3]).
Theorem II. Let P^{n} satisfy (a), (b), (c), and (d) for every n. Then either

$$
\sup \left\{P^{n+k} f-P^{n} f \mid-1 \leqslant f \leqslant 1\right\}=2 \text { a.e. }
$$

or

$$
\lim _{n \rightarrow \infty}\left(\sup \left\{P^{n+k}-P^{n} f \mid-1 \leqslant f \leqslant 1\right\}\right)=0 \text { a.e. }
$$

Proof. As in [2], define

$$
h_{n}=\sup \left\{P^{n+k_{f}}-P^{n} f \mid-1 \leqslant f \leqslant 1\right\}
$$

then

$$
S_{n} 1=1-\frac{h_{n}}{2}, \quad 0 \leqslant h_{n} \leqslant 2, h_{n} \geqslant h_{n+1} \text { and } P h_{n} \geqslant h_{n+1} .
$$

Thus $h_{n} \downarrow h$ where $P h \geqslant h$. By (d) $h=$ const. $=\alpha$. Now if $\alpha<2$ then we may find integers n_{1}, \ldots, n_{r} with $S_{n_{1}} S_{n_{2}} \ldots S_{n_{r}} 1 \neq 0$:

$$
S_{n_{1}} S_{n_{2}} \ldots S_{n_{r}} S_{n} 1 \uparrow\left(1-\frac{\alpha}{2}\right) S_{n_{1}} S_{n_{2}} \ldots S_{n_{r}} 1 \neq 0
$$

(We used (c) here.) Thus in equation (2), $U 1=R_{n_{1}, n_{2}, \ldots, n_{r}} 1 \neq 1$. Let $g=$ $\lim U^{j} 1$ (note that $1 \geqslant U 1 \geqslant U^{2} 1 \geqslant \cdots$) then $g=U g \leqslant P^{m} g$. Since P^{m} satisfies (d), $g=$ const. but then $S_{n_{1}} \ldots S_{n_{r}} g=0$ and by our choice of n_{1}, \ldots, n_{r} we must have $g=0$. Finally, by (3)

$$
\left|P^{j m}\left(I-P^{k}\right) f\right| \leqslant \frac{\text { const. }}{\sqrt{r}}+2 R^{j} 1 .
$$

Since the right-hand side tends to zero, independently of $f,-1 \leqslant f \leqslant 1$, and h_{n} is a monotone sequence, we must have $h_{n} \rightarrow 0$ a.e.

Remark. Let us follow [3] and note that if P is in the 0-class and $u \in L_{1}$ then $\left\|u\left(P^{n+k}-P^{n}\right)\right\|=\left\langle u,\left(P^{n+k}-P^{n}\right) f\right\rangle$ for some $-1 \leqslant f \leqslant 1$ thus $\left\|u\left(P^{n+k}-P^{n}\right)\right\| \xrightarrow[n \rightarrow \infty]{ } 0$. Now the closure of $L_{1}\left(I-P^{k}\right)$ is

$$
V=\left\{V \in L_{1}\langle v, g\rangle=0 \quad \text { for all } g \in L_{\infty}, g=P^{k} g\right\}
$$

by the Hahn Banach Theorem. Thus $\left\|v P^{n}\right\| \rightarrow 0$ whenever $v \in V$. By (d) applied to $P^{k}, v \in V$ if and only if $v \in L_{1}$ and $\int v d m=0$.

If P is induced by an invertible measure preserving transformation then $\left\|u P^{n}\right\|=\|u\|$ and P is necessarily in the 2-class.

If P is in the 2-class and the transition probabilities $P^{n}(x, \cdot)$ are defined, then

$$
2=\sup \left\{P^{n+k} f-P^{n} f \mid-1 \leqslant f \leqslant 1\right\} \leqslant\left\|P^{n+k}(x, \cdot)-P^{n}(x, \cdot)\right\| \leqslant 2
$$

Bibliography

1. S. R. Foguel, The ergodic theory of Markov processes, Van Nostrand Reinhold, New York, 1969. MR 41 \#6299.
2. _ On the "zero-two" law, Israel J. Math. 10 (1971), 275-280. MR 45 \#7808.
3. D. Ornstein and L. Sucheston, An operator theorem on L_{1} convergence to zero with applications to Markov kernels, Ann. Math. Statist. 41 (1970), 1631-1639. MR 42 \# 6938.

Institute for Advanced Studies, Hebrew University of Jerusalem, Mount Scopus, Israel

