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ON ASYMPTOTIC VALUES OF ANALYTIC FUNCTIONS

ON RIEMANN SURFACES

MIKIO NIIMURA

Abstract. Some generalizations of Lindelof's theorems on asymptotic val-

ues of bounded analytic functions are given on subregions of Riemann

surfaces.

Let R be an open Riemann surface. Let R* denote a metrizable compactifi-

cation of R, and put A = R* - R. A means the closure of a set A c R* with

respect to R*. dA means the relative boundary of A c R with respect to R.

Let G be a region, which is not relatively compact on R, with the property

that dG consists of a finite number of noncompact Jordan arcs C„ (n = 1,

2, . . . , tV), and that G n A is a single point p.

Each point q of dG is accessible in G. It is said that a Jordan arc J :

a = g(') (0 < / < 1) decides an accessible boundary point q(J) in G, when

J c G and \iml^xg(t) = q. Let Jordan arcs Jt and J2 decide accessible

boundary points q(J,) and q(J2) in G, respectively. Let V(q) be any paramet-

ric disk about q satisfying J', n dV(q) =£ 0 and J2 n dV (q) ^ 0. Let J[ and

J2 denote, respectively, the components of Ji n V(q) and J2 n V(q) which

are not relatively compact on G. We say that q(Jx) and q(J2) are identical

when two points qx E J[ n dV(q) and q2 E J2 D dV(q) can be joined by a

Jordan arc J* c G n F(^). If not, then it is said that q(J,) and ^(y2) are

distinct.

In this sense, let each point of dG be distinguished, and let hn(t) (0 < / <

1) denote a parametric representation of Cn.

Let h be any bounded continuous real-valued function on dG U {/>}. Since

/? — h(p) is resolutive (cf. [1, Theorem 3.2]), h is resolutive (cf. [1, Theorem

8.1]). Therefore G* = G U 3G u {.p} is a resolutive compactification of G

with respect to the relative topology of G* for R* (cf. [1, p. 87]).

Henceforth we assume that p is regular with respect to G* in the sense of

the Dirichlet problem, and that {p} is of harmonic measure 0 with respect to

G*.

In this paper we shall show the following Theorem and its applications.

Theorem. Let f be a bounded holomorphic function on G which is continuous
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on G U dG. If lim supc 3a^p\f(a)\ < m for each n, then lim supc 3a^p\f(a)\

< m.

Proof. We choose an M such that |/| < M on G and m < M. For any

e > 0 (e < M — m) and each n, there exists a T„ such that |/| < m + fon

{hn(t); t > Tn}. Let U0(p) be a neighborhood of p satisfying dG n c/0(p) c

U „h„(t) for all t > Tn. Let A0 be a nonnegative continuous function on

dG U {p} which is equal to 0 at p and is equal to log M/(m + e) on

3Gn(R- U0(p)).

Let u be the solution of the Dirichlet problem on G with h0 as a boundary

function, and let v be a conjugate harmonic function of u on C We put

F = fe~"~iv. Since e~u < 1 on G u 3G, we have |F| < M on G and |F| < w

+ e on dG.

{p} is polar with respect to G* (cf. [1, p. 94]). Let 5 be a positive

superharmonic function on G with limG3a^ps(a) = oo; then for any e' > 0,

lim inf      (- \F(a)\ +m + e + e's(a)) > 0.
C3fl^3Gu(p}V '

Therefore from the minimal principle (cf. [1, Theorem 1.2]), we have \F\ < m

+ e + e's on G and, hence, \F\ < m + e on it.

Since hmg^^e" = 1, there exists a neighborhood U*(p) satisfying e" < 1

+ e on G n t/*(/?). Thus |/| < (ra + e)(l + e) on G n £/*(/>) and, hence,

lim supG3a^p\f(a)\ < m.

By applying the Theorem to / — c, we have

Corollary 1. For f as defined in the Theorem, if limc 3l,^pf(a) = c for

each n, then limG 3a^pf(a) = c.

Henceforth let \imc^3a^pf(a) = c' for each « (n = 1, 2, . . . , w), and let

limc 3a^pf(a) = c" for each n (n = m + I, m + 2, . . . , N), where c' and c"

are finite.

Corollary 2. If f is a function defined as in the Theorem, then c' = c" and

lime 3a^pf(a) = c'-

Proof. We put H = (f — c')(f - c") and get limc 3a^pH (a) = 0. For any

e > 0, there exist r, and t2 such that \f - c'\ < Ve on {hx(t); t > tt} and

|/- c"\ < Ve on {hm+i(t); t > t2}. From Corollary 1, there exists a neigh-

borhood U'(p) such that {/;,(/); t > /,} n (R - U'(p)) ^ 0, {Am+1(r); / >

/2} n (R - u"(jd)) ^ 0 and \H\ < e on G n t/'(/')-

Let Z) be the component of G n £/'(/>) which is not relatively compact;

then a point a, of {ht(t); t > /,} n D and a point a2 of {/!„,+ ,(/); / > /2) n

D can be joined by a Jordan arc C0 c Z>. If \f(a2) - c'\ < Ve , then

|c' - c"| < 2Ve . If |/(«2) - c'\>Ve , then there exists a point a0 G C0

satisfying |/(a0) - c'\ = Ve . Thus |/(a0) - c"| < VI and, hence, c' = c".

From Corollary 2 and the proof of Lindelof's theorem (cf. [2, pp. 307-308])

we have
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Corollary 3. Let f be meromorphic on G \jdG. If f omits three distinct

values cx, c2 and c3 in G, then c' = c" and limG =,a^„/(a) = c'.

From Corollary 3 we have

Corollary 4. /// is meromorphic on G u dG and c' =h c", then every value

of {\w\ < oo} is assumed in G infinitely often by f with at most two exceptions.

Corollary 5. Let f be a holomorphic function on G which is continuous on

G u dG. If c' t^ c", then there exists an asymptotic path L converging to p with

Proof. From Corollary 2, / is unbounded on G. Let Un(p) denote the

1///-neighborhood of p, and let N* be an integer satisfying N* >

supaE3G|/(a)|. Let Dn be a component, which is not relatively compact on

G U dG, of {a E G; \f(a)\ > n) n U„(p) for each n > N* such that Dn+X c

Dn. We take a point an E Dn for each n > N*, and join a„ and an+x by a

Jordan arc L„ c Dn such that L„ +, n (\J"k = N.Lk - {an+]}) = 0. L = U„Ln

converges top and limL3a^pf(a) = oo.
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