ON ASYMPTOTIC VALUES OF ANALYTIC FUNCTIONS ON RIEMANN SURFACES

MIKIO NIIMURA

ABSTRACT. Some generalizations of Lindelöf's theorems on asymptotic values of bounded analytic functions are given on subregions of Riemann surfaces.

Let R be an open Riemann surface. Let R^* denote a metrizable compactification of R, and put $\Delta = R^* - R$. \overline{A} means the closure of a set $A \subset R^*$ with respect to R^* . ∂A means the relative boundary of $A \subset R$ with respect to R. Let G be a region, which is not relatively compact on R, with the property that ∂G consists of a finite number of noncompact Jordan arcs C_n $(n = 1, 2, \ldots, N)$, and that $\overline{G} \cap \Delta$ is a single point p.

Each point q of ∂G is accessible in G. It is said that a Jordan arc J: a=g(t) $(0 \le t < 1)$ decides an accessible boundary point q(J) in G, when $J \subset G$ and $\lim_{t \to 1} g(t) = q$. Let Jordan arcs J_1 and J_2 decide accessible boundary points $q(J_1)$ and $q(J_2)$ in G, respectively. Let V(q) be any parametric disk about q satisfying $J_1 \cap \partial V(q) \neq \emptyset$ and $J_2 \cap \partial V(q) \neq \emptyset$. Let J_1' and J_2' denote, respectively, the components of $J_1 \cap V(q)$ and $J_2 \cap V(q)$ which are not relatively compact on G. We say that $q(J_1)$ and $q(J_2)$ are identical when two points $q_1 \in \overline{J_1'} \cap \partial V(q)$ and $q_2 \in \overline{J_2'} \cap \partial V(q)$ can be joined by a Jordan arc $J^* \subset G \cap \overline{V(q)}$. If not, then it is said that $q(J_1)$ and $q(J_2)$ are distinct.

In this sense, let each point of ∂G be distinguished, and let $h_n(t)$ ($0 \le t < 1$) denote a parametric representation of C_n .

Let h be any bounded continuous real-valued function on $\partial G \cup \{p\}$. Since h - h(p) is resolutive (cf. [1, Theorem 3.2]), h is resolutive (cf. [1, Theorem 8.1]). Therefore $G^* = G \cup \partial G \cup \{p\}$ is a resolutive compactification of G with respect to the relative topology of G^* for R^* (cf. [1, p. 87]).

Henceforth we assume that p is regular with respect to G^* in the sense of the Dirichlet problem, and that $\{p\}$ is of harmonic measure 0 with respect to G^* .

In this paper we shall show the following Theorem and its applications.

THEOREM. Let f be a bounded holomorphic function on G which is continuous

Received by the editors April 6, 1976.

AMS (MOS) subject classifications (1970). Primary 30A72; Secondary 30A50.

Key words and phrases. Lindelöf's theorem, asymptotic value, bounded analytic function, Riemann surface, subregion.

on $G \cup \partial G$. If $\limsup_{C_n \ni a \to p} |f(a)| \le m$ for each n, then $\limsup_{G \ni a \to p} |f(a)| \le m$.

PROOF. We choose an M such that $|f| \le M$ on G and m < M. For any $\varepsilon > 0$ ($\varepsilon < M - m$) and each n, there exists a T_n such that $|f| \le m + \varepsilon$ on $\{h_n(t); t \ge T_n\}$. Let $U_0(p)$ be a neighborhood of p satisfying $\partial G \cap U_0(p) \subset \bigcup_n h_n(t)$ for all $t \ge T_n$. Let h_0 be a nonnegative continuous function on $\partial G \cup \{p\}$ which is equal to 0 at p and is equal to $\log M/(m + \varepsilon)$ on $\partial G \cap (R - U_0(p))$.

Let u be the solution of the Dirichlet problem on G with h_0 as a boundary function, and let v be a conjugate harmonic function of u on G. We put $F = fe^{-u-iv}$. Since $e^{-u} \le 1$ on $G \cup \partial G$, we have $|F| \le M$ on G and $|F| \le m + \varepsilon$ on ∂G .

 $\{p\}$ is polar with respect to G^* (cf. [1, p. 94]). Let s be a positive superharmonic function on G with $\lim_{G \ni a \to p} s(a) = \infty$; then for any $\varepsilon' > 0$,

$$\lim_{G \ni a \to \partial G \cup \{p\}} \left(-|F(a)| + m + \varepsilon + \varepsilon' s(a) \right) \ge 0.$$

Therefore from the minimal principle (cf. [1, Theorem 1.2]), we have $|F| \le m + \varepsilon + \varepsilon' s$ on G and, hence, $|F| \le m + \varepsilon$ on it.

Since $\lim_{G\ni a\to p} e^u = 1$, there exists a neighborhood $U^*(p)$ satisfying $e^u \le 1 + \varepsilon$ on $G \cap U^*(p)$. Thus $|f| \le (m+\varepsilon)(1+\varepsilon)$ on $G \cap U^*(p)$ and, hence, $\lim \sup_{G\ni a\to p} |f(a)| \le m$.

By applying the Theorem to f - c, we have

COROLLARY 1. For f as defined in the Theorem, if $\lim_{C_n \ni a \to p} f(a) = c$ for each n, then $\lim_{G \ni a \to p} f(a) = c$.

Henceforth let $\lim_{C_n \ni a \to p} f(a) = c'$ for each n (n = 1, 2, ..., m), and let $\lim_{C_n \ni a \to p} f(a) = c''$ for each n (n = m + 1, m + 2, ..., N), where c' and c'' are finite.

COROLLARY 2. If f is a function defined as in the Theorem, then c' = c'' and $\lim_{G \ni a \to p} f(a) = c'$.

PROOF. We put H=(f-c')(f-c'') and get $\lim_{C_n\ni a\to p}H(a)=0$. For any $\varepsilon>0$, there exist t_1 and t_2 such that $|f-c'|\leqslant \sqrt{\varepsilon}$ on $\{h_1(t);\ t\geqslant t_1\}$ and $|f-c''|\leqslant \sqrt{\varepsilon}$ on $\{h_{m+1}(t);\ t\geqslant t_2\}$. From Corollary 1, there exists a neighborhood U'(p) such that $\{h_1(t);\ t\geqslant t_1\}\cap (R-U'(p))\neq\emptyset$, $\{h_{m+1}(t);\ t\geqslant t_2\}\cap (R-U'(p))\neq\emptyset$ and $|H|\leqslant \varepsilon$ on $G\cap U'(p)$.

Let D be the component of $G\cap U'(p)$ which is not relatively compact; then a point a_1 of $\{h_1(t);\ t\geqslant t_1\}\cap D$ and a point a_2 of $\{h_{m+1}(t);\ t\geqslant t_2\}\cap D$ can be joined by a Jordan arc $C_0\subset D$. If $|f(a_2)-c'|\leqslant \sqrt{\varepsilon}$, then $|c'-c''|\leqslant 2\sqrt{\varepsilon}$. If $|f(a_2)-c'|>\sqrt{\varepsilon}$, then there exists a point $a_0\in C_0$ satisfying $|f(a_0)-c'|=\sqrt{\varepsilon}$. Thus $|f(a_0)-c''|\leqslant \sqrt{\varepsilon}$ and, hence, c'=c''.

From Corollary 2 and the proof of Lindelöf's theorem (cf. [2, pp. 307-308]) we have

COROLLARY 3. Let f be meromorphic on $G \cup \partial G$. If f omits three distinct values c_1 , c_2 and c_3 in G, then c' = c'' and $\lim_{G \ni a \to p} f(a) = c'$.

From Corollary 3 we have

COROLLARY 4. If f is meromorphic on $G \cup \partial G$ and $c' \neq c''$, then every value of $\{|w| \leq \infty\}$ is assumed in G infinitely often by f with at most two exceptions.

COROLLARY 5. Let f be a holomorphic function on G which is continuous on $G \cup \partial G$. If $c' \neq c''$, then there exists an asymptotic path L converging to p with $\lim_{L \ni a \to p} f(a) = \infty$.

PROOF. From Corollary 2, f is unbounded on G. Let $U_n(p)$ denote the 1/n-neighborhood of p, and let N^* be an integer satisfying $N^* > \sup_{a \in \partial G} |f(a)|$. Let D_n be a component, which is not relatively compact on $G \cup \partial G$, of $\{a \in G; |f(a)| > n\} \cap U_n(p)$ for each $n \ge N^*$ such that $D_{n+1} \subset D_n$. We take a point $a_n \in D_n$ for each $n \ge N^*$, and join a_n and a_{n+1} by a Jordan arc $L_n \subset D_n$ such that $L_{n+1} \cap (\bigcup_{k=N^*}^n L_k - \{a_{n+1}\}) = \emptyset$. $L = \bigcup_n L_n$ converges to p and $\lim_{L \ni a \to p} f(a) = \infty$.

REFERENCES

- 1. C. Constantinescu and A. Cornea, *Ideale Ränder Riemannscher Flächen*, Springer-Verlag, Berlin, 1963. MR 28 #3151.
 - 2. M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959. MR 22 #5712.

DEPARTMENT OF MATHEMATICS, SHIBAURA INSTITUTE OF TECHNOLOGY, 3-9-14, SHIBAURA, MINATO-KU, TOKYO, JAPAN