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RANKS OF MATRICES OVER ORE DOMAINS

H. BEDOYA AND J. LEWIN1'2

Abstract. Let R be a Noetherian Ore domain. Then rank M = inner rank

M for every matrix M over R if and only if R is projective-free of global

dimension at most 2.

1. Let R be a right and left Ore domain with field of quotients Q and let M

be a finitely generated right /{-module. The then rank r{M) is the Q-

dimension of the vector space M ®RQ and we denote by ¿/(A/) the least

number of elements in a set of generators of M.

If y is a homomorphism of free A-modules y: R" -* Rm, then the rank r(y)

of y is the rank of the image of y. The inner rank p(y) of y (defined by Bergman

[1, p. 126] for arbitrary rings) may be defined to be the minimum of ¿/(A/),

where Im(y) < M < Rm. Alternatively, if G is a matrix for y, then p(y) is the

least integer p such that G = GXG2 with G. an m X p and G2 a p X n matrix.

Inner rank and rank do not always coincide, even over commutative domains.

In this note we give necessary and sufficient conditions on a Noetherian Ore

domain for the two notions of rank to coincide, and thus give a partial answer

to a question raised by Bergman [1, p. 150].

2. Throughout, A is a right and left Ore domain with field of quotients Q.

All modules are right A-modules, and tensor products are over R.

Lemma 1. (a) //0 -» N -* R" is exact then N ® Q = 0 implies that N = 0.

(b) Let 0 —» R" —> M be an exact sequence of R-modules. If i/(A/ ) < n then

in fact M sí R".

Proof. Both parts of the lemma are immediate consequences of the

exactness of <8>Ä Q.

(a) If x is a nonzero element of N then xR sí R. Thus the exactness of

0 -* R -> N gives 0 -» Q -* N ® Q which insures that N ® Q ^ 0.

(b) Let 0->A"-»A"—»A/-»0bea presentation for M. Tensoring both

sequences with Q, we get the exact diagram
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0-+K®Q^>R"®Q->M®Q^>0

Î
Rn®Q

T
0

This shows that both maps into M ® Q are isomorphisms and hence that

K ® Ô = 0. Thus K = 0, as needed.    D

Lemma 2. The following are equivalent:

(i) IfM< R", then r(M) = n or M < K < R" with K a: A"-1.

(ii) If M < R", then r(M) = n or M < K < R" with d(K) = n - 1.
(iii) If0^> K^> R" ^> Ris exact, then K ^ R"~l.

Proof, (i) => (ii) trivially.
Assume (ii) and let K' be the kernel of a functional R" -* R. Tensoring with

Q, we see r(K') = n - 1. Thus if K' =h R"~l, then, by Lemma 1, d(K') > n.

Then by (ii) K' < K < R" with rf(Jf) = « - 1. But Ä/JST', as a nonzero

submodule of 7?, contains a copy of R generated, say, by k + A"'. But then

it/1 n A" = 0 so that K' © /U? < K and /-(Ä") > tj. This contradicts d(K)

= n — I and so (iii) holds.
Assume (iii) and suppose M < R", with r(M) < tj. Then there is a @-

functional y: R" ® ß -» Q which vanishes at A/ ® Q. Let y' be the restriction

of y to R". Then y': /?" -> Q is an /?-linear map which vanishes at M. Now

y'(R") is a finitely generated Ä-module, say y'(R") = qxR + • ■ ■ + q„R. Since

R is also a left Ore domain, there are elements r, rx, ..., rn in R with r =£ 0

and q¡ = r~xr¡. Thus ry'(R") Q R. Thus ry' is an Ä-functional from R" to R.

Since y'(M) = 0, also f"y'(M) = 0. Thus M < Ker(ry'), which is isomorphic

to R"~l by assumption, and (i) holds.    □

Some definitions, y: R" -» Ä" is/w// if p(y) = n. R has ^CC* if for each

n, free Ä-modules have ACC on Ti-generator submodules.

Proposition, (a) Let R satisfy (i) and y: R" -> Äm. r/tevi p(y) = r(y).

(b) Lei Ä Tiafe ylCC*. J/ R does not satisfy (iii) then there is a full
homomorphism y: R" —* R" of rank less than n.

Proof, (a) Assume (i) and let y: R" -» Rm. If m = 1 then clearly p(y)

= T-(y) and we use induction on m. If p(y) = m, then Im y is not contained in

an m - 1 generator submodule of Rm. Thus, by (i), r(Im y) = ttj and hence

p(y) = r(y) = m- Otherwise Im y < M < Rm with d(M) = p(y) < m.

Thus, by (i), M < Rm~{ < Rm. Let y, be the map y cut down to Rm~l and y2

be the injection Rm~l —> Rm. Then y = y1 y2. Clearly p(yj ) > p(y). But since

Im y, < M < Rm~l and í/(M) = p(y), then p(y,) = p(y). Thus p(y,) = r(y,)

by induction. Since y2 is one-to-one, r(y, ) = r(y). Thus, finally, p(y) = p(yj )
= Kyi) = '"(y)-

(b) Assume R has ACC* and that y: R" -» R is a functional whose kernel

A is not isomorphic to R"~x. Since r(K) = n — 1, it follows from Lemma 1

that </(#) > tí and also that a free submodule F of K has r(.F) = d(F)
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< n — I. Thus A" is not free and, by ACC*, K has the maximal condition on

free submodules. Let then F < A" be a submodule of A" maximal with respect

to being free. Then r(F) = n — 1. Let x be K but not in F. Let M = F + xR.

If diM) < m, then M is free, in contradiction with the choice of F. Thus

diM) = ai. Suppose M < F < A" with ¿(F) < n. Then, since F < T, Lem-

ma 1 insures that T = A"-1. Now from the exact sequence 0 -* M -* T

-» F/A/ -» 0 we get the exact sequence

O->A/®0-»F®ß^ T/M ® g -> 0

which gives F/A/ ® Q = 0. Now since M < A" we also have a sequence

F/A/ -► F + A/A" -> 0 which gives

T/M ® ß -+ T + K/K ® Q -h> 0.

Thus F+ A/A"® Ô is zero and hence by Lemma 1, T+ K/K = 0, i.e.

F < A". This contradicts the maximality of F. It follows that any map

a: R" -* R" whose image is M has inner rank n and rank n - 1.

The Proposition shows that for Ore domains with ACC, whether rank =

inner rank can be decided by considering only full homomorphisms.

If A is a Noetherian (and hence Ore) domain, we can couch the Proposition

in homological terms.

Theorem 1. Let R be a Noetherian domain. Then inner rank = rank if and

only if R has global dimension at most two and finitely generated projective R-

modules are free.

Proof. By Theorem 21 of [3], gl dim (A) = 1 + horn dim iA) where A is
some ideal of A. Present A asO-»A"—>F->,4—>0 where F is a finitely

generated free module. If inner rank = rank then (iii) holds so that

horn dim A < 1 and hence gl dim (A) < 2. Further, if F is a finitely generat-

ed projective with d = </(F) then P 0 Q = Rd for some Q. If r(F) = d then

P is free. If r(F) < d, it follows from (i) that P < M < Rd with diM)

= d — 1. But P is again a summand of M, so diP) < d — 1, a contradiction.

So finitely generated projective A-modules are free. The reverse implication

follows in a similar manner.

The Noetherian, or at least the ACC*, hypothesis of Theorem 1 is

necessary: considering matrices, let M be an m X « matrix over A of inner

rank p. Then M = A/j M2 where A/i is m X p and A/2 is p X n. Then M has

inner rank p when considered as a matrix over the ring A' generated by the

entries of A/j and M2. Also, if A is commutative, r(A/) is the rank of M as a

matrix over A', since r{M) is the maximal order of a submatrix of M with

nonzero determinant. So if A is commutative and inner rank = rank for all

finitely generated subrings of A, this is also true for A. Thus a union of (finitely

generated) projective-free commutative rings of global dimension < 2 has the

property that inner rank = rank. Such a ring may well have global dimension

> 2. For example let G be a torsion-free infinitely generated locally cyclic

abelian group. Then ZG has global dimension 3 [2, Theorem 5, p. 149].
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3. Remarks, (a) David Lissner proved for us that the following is an explicit

example of a full 3x3 matrix which has rank 2: let k be a field,

(-z     0      x\

y     -x     0     .

0     .    -y)

(b) It is easy to see that if every full matrix over R[x] is invertible over Q(x)

then every full matrix over R is invertible over Q. Theorem 1 gives a simple

proof of the well-known fact that if R is a Dedekind domain and R[x] is

projective-free then R is a PID.

(c) Using results of Lissner and Geramita [4, Theorems 2.6 and 3.4],

Theorem 1 can be restated in terms of the outer product property: for a

commutative Noetherian domain, inner rank = rank if and only if R is an

outer product domain which is a UFD.
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