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REMARKS CONCERNING THE SUPPORTS OF

SOLUTIONS OF PSEUDOPARABOLIC EQUATIONS

WILLIAM RUNDELL AND MICHAEL STECHER

Abstract. This paper deals with the existence of nontrivial solutions of the

pseudoparabolic equation uxxl - u, + uxx = 0 whose supports lie in the half

spaces t > t0, x > x0. In addition, we show the nonexistence of solutions

whose supports lie in bounded strips in x or /.

I. Introduction. The purpose of this paper is to study the qualitative

behavior of solutions of the pseudoparabolic equation

(1-1) Pu = uxx, - u, + uxx = 0.

In particular, we are concerned with the nature of the supports of these

solutions.

We shall contrast the results obtained for (1.1) with those of the heat

equation

(1.2) Hu = u,-uxx = 0.

One reason for this contrast is that these equations may be used to model

similar physical phenomena, with the pseudoparabolic equation correspond-

ing to a higher order correction to the model that gives rise to the heat

equation. Examples of this may be found in [1], [2] and [6]. In many cases the

same boundary value problems are well posed for both these equations [7],

[8], and the solution of the heat equation may be approximated by solutions

of the pseudoparabolic equation.

In §11 we discuss the following question. Can a nontrivial solution of either

(1.1) or (1.2) possess the property: for some x0 the solution vanishes identi-

cally in x and t for x < x0? For the heat equation this is impossible, since, as

is well known, every solution of this equation is analytic in x, cf. [5]. We shall

show however that such behavior is possible for solutions of pseudoparabolic

equations. This leads to a further question: Can equation (1.1) have a solution

which has compact support in x? Surprisingly this is not possible.

The third section of this paper deals with the corresponding question for t,

that is, for some t0 can a solution of either (1.1) or (1.2) be such that it

vanishes identically in x and / for / < t0, but not for / > /0? That such

behavior is possible for solutions of the heat equation is a classical result due

to Tychonov [4]. We show that this is also possible for a solution of Pu = 0.
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Again the question arises: Is it possible to have a solution with compact

support in 7? Tychonov's method can be used to show that this may happen

for solutions of the heat equation. For the pseudoparabolic case this is not

possible.

In the final section, we discuss extensions of these results to equations in

more than one space variable and to nonconstant coefficients.

Throughout this paper by solutions we mean strong solutions. That is,

solutions that are twice continuously differentiable with respect to x and

continuously differentiable with respect to t.

II. Solutions with support contained in the half space x > x0. We shall first

obtain a representation due to Colton [3] for solutions of pseudoparabolic

equations in one space variable. For convenience we outline his method.

We define the adjoint equation of Pt7 = 0 to be

(2.1) P*v = vxxl + €,- vxx = 0.

It is shown in [3] that there exists a unique solution of (2.1) in the rectangle

R which is bounded by the lines x = 0, x = £, 7 = 0, t = t and satisfies the

boundary conditions

(2.2) t>(|,a,T) = 0,    v(x,r,ir) = 0,    vx(t,t¿,r) = 1 - eu~r).

Now integrate the identity

(2.3) v,Pu - u,P*v = — {uxiv, - u,vxl + uxv, + u,vx) - — {uxvx}

over the rectangle R to obtain, by Green's theorem,

f   f [v,Pu - u,P*v] dx dt= f  (uxlv, - u,vxl + uxv, + u,vx) dt

(2-4)
+ I   uxvx dx.

JäR

Using conditions (2.2) we derive the representation

u(i, t) = A(¿) - f h'(x)vx(x,0¿,r) dx
Jo

(2-5) + P[ g'(t)M^ir) - f'(t)vxl(0,t,i,r)
Jo

+ g(t)v,(0,t¿,T) + f'(t)vx(0,t¿,T)] dt

where

(2.6) 7/(0,7) =/(7),    ux(0,t) = g(t),    u(x,0) = h(x).

It is assumed that/, g E C'[0, t] and h E C2[0, £]. It can be shown that (2.5)

represents the unique solution to Pu = 0 which satisfies the boundary condi-

tions (2.6).

Our first result now follows rather easily. Choose x0 > 0 and/(7) = g(t) =

0. Choose h (x) E C2(R) to have support contained in x > x0. From (2.5) it is
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clear that we obtain a solution w(£, t) such that i/(|, t) = 0 for 0 < £ < x0,

but does not vanish identically. From (2.5) it is clear that this solution may be

extended by zero for £ < 0.

We remark that this difference in support properties of the heat equation

and pseudoparabolic equation can perhaps best be explained by noting that

the heat operator is "infinitely smoothing" on the initial data whereas the

pseudoparabolic "preserves the smoothness" of the initial data.

We now prove that there are no solutions of compact support in x.

Theorem 1. Let u(x, t) be a solution of Pu = 0 such that u(x, t) = 0 for

x < x0 and x > x, with x0 < xx, then u(x, t) vanishes identically.

Proof. Without loss of generality assume x0 = 0 and x, = tt. Since we are

assuming that our solutions are strong solutions we have that u(x, 0) G

C2(R). This is a consequence of the fact that the initial boundary value

problem for pseudoparabolic equations is well posed both backwards and

forwards in time and preserves the smoothness of the initial data.

We point out that ux(0, t) = 0.

By separation of variables we may represent a solution, for 0 < x < tt, by

(2-7) u(x, 0=1 a^-^'sin nx,       Xn = —^— ,
n=\ 1 + n2

where

00

(2.8) u(x, 0) = 2 an sin nx
«=i

and from our assumption on u(x, 0) we have {nan}™=x G I1. Also

oo

(2.9) 0= «,(0,/) = 2 nane-^'.
n=\

It is clear that (2.9) converges uniformly in t. We then take the Laplace

transform L(t -^ s) to obtain for s > 0,

oo

(2.10) 0=2 nan(s + A„).
n=l

The series/(z) = ~2™=xnan(z + Xn) represents a meromorphic function of z

with poles at z = — Xn, n = 1,2, . . . , and such that/(z) is zero for z real and

positive. Hence f(z) is identically zero and the residues at the poles are also

zero and, thus, an = 0 for all n. It follows that u(x, t) = 0 for 0 < x < tt.

We have, in fact, proved a slightly stronger result, namely that if u(x, t) =

0 for x < x0 and u(xx, t) = 0 for some x, > x0 then u(x, t) = 0 for x < x,.

III. Solutions with support contained in the half space / < t0. We now show

the existence of nontrivial solutions of Pu = 0 that vanish identically for

t < t0.

The method which Tychonov used to construct solutions of this type for

the heat equation is not applicable to the pseudoparabolic equation. It is
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possible, however, by the use of integral operator techniques to show the

existence of such solutions.

In [7] it is shown that every solution u(x, t) of Pu = 0 with u(x, 0) = 0 may

be written in the form

(3.1) u(x, t) = h(x, t) + (' f K(x,a,t - r)hT(xo2, t) da dr,
•>o •'o

where h(x, t) satisfies hxxl = 0 with h(x, 0) = 0, that is,

(3.2) h(x, t) = xgx(t) + g2(t),       gl(0) = g2(0) = 0,

and

°°   , „ ,2» (1 — a2)"

(3.3) *(*,.,-)- 2(f)    ■^TWÁ')

with

(3.4) a'n + x(t) = a'n(t) - an(t),       «„(0) = 1,        ax(t) = I + t.

Note that an(t) is a polynomial of degree n in t. Clearly it suffices to choose

t0 > 0. By choosing for example gx(t) = 0 and g2(t) to be continuously

differentiable with support in 7 > 70, the existence of the required solution to

Pu = 0 follows from the representation (3.1).

We now use this representation to show that solutions of Pu = 0 with

compact support in time must be identically zero. In fact we prove a stronger

result.

Theorem 2. // for some t0 and 7, we have u(x, t0) = u(x, tx) = 0, then

u(x, t) = 0 for t0 < 7 < 7,.

Proof. Without loss of generality choose 70 = 0. From (3.1) we have,

(3.6)    0 = xgx(tx) + g2(tx) +f^fXK(x,a,tx - t)[<jV,(t) + g2(r)] do dr.

Replacing K by its power series, and equating powers of x we obtain

(3-7) *,(/,) - &(/,) - 0,

(3-8) f\(tx-T)g¡(r)dr=0,       7=1,2.
•'o

From (3.2) and (3.7) we have that g¡(j) is orthogonal (in L2[0, 7,]) to 1. From

(3.8) and the form of the an's we have that g¡(r) is orthogonal to t" for

n — 1,2, .... Hence g,(r) is a constant and thus 0.

We remark that in Tychonov's example for the heat equation, the solution

u(x, t) grows faster than e"*1 for any constant a, that is, the solution does not

lie in the uniqueness class for the heat equation. In the case of the pseudo-

parabolic equation, u(x, t) does not lie in L2(R), a sufficient condition for a

unique solution to the Cauchy problem for this equation.
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IV. Generalizations. We conclude by briefly indicating possible extensions

of these results to nonconstant coefficients and to more than one space

variable.

In §11 Colton's representation is valid only for one space variable, but may

be extended to variable even time dependent coefficients [3]. Thus our results

can be extended to this case. The fact that there are no nontrivial solutions of

compact support in x has an obvious analogue, by generalised Fourier series,

to n space variables with time independent coefficients.

In §111 the integral operator may be extended to n variables where h(x, t)

satisfies Ah, = 0. The kernel K has x replaced by

r = V(*î + x¡ + ■ ■ ■ + x2).

A similar representation is also possible when the coefficients depend analyti-

cally on r2 [7]. In this case K(r,a,t) has the form

00

(4.1) K(r,o,t)= £ eU)(/2, 00 - °2)
k = \

where e(k\r2, t) is analytic in r2 and t and for fixed r2 is a polynomial of

degree k in t. The existence of solutions with support in the half space t > t0

can now be extended to n space variables and to pseudoparabolic equations

with coefficients which are analytic functions of r2. We have been unable to

extend Theorem 2 to more than one space variable. However in this case

when the coefficients are analytic functions of x2, the same proof goes over as

before, by equating even and odd functions of x.

Theorem 2 is, in general, false when the coefficients depend on t, for

example

u(x, t) = t(\ — t)e' sinh x

is a solution of the equation

«« ~(t2-t+ O", + (t2 + t - \)uxx = 0.
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