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Abstract. Rolewicz raised the question in [5] as to whether there existed a

separable F-space X0 such that any other separable F-space Y is the image

of A"0 under a continuous linear operator. This can be equivalently phrased

as the question [5, Problem II.4.3, p. 47]: Does there exist a separable

F-space universal for all separable F-spaces with respect to linear codimen-

sion? Theorem 1 proves the existence of such a separable F-space. Theorem

2 generalizes this idea to larger cardinals.

1. Introduction. A metric linear space X is called an F-space if X has a

complete metric p with the property that p(x + z, y + z) = p(x, y) for all x,

y, z EX. Such a metric, p, is said to be invariant. By a theorem of Kakutani

[5, Theorem 1.1.1, p. 12], every metric linear space has an invariant metric. By

a theorem of Klee [5,1.4.3, p. 24] if A' is a topologically complete metric linear

space then an invariant metric for the topology on A1 is a complete metric on

X.

Let A be a set of cardinality N. The space /,(«) is defined to be the set of all

real functions r = {rx} defined on the set A with at most a countable number

of nonzero elements and with 2A|/\| < °o. The norm on /,(«) is ||r|| = 2A|/\|.

Schauder proved the following theorem:

Theorem (Schauder, see Banach-Mazur [I,p. Ill] and Klee [4, Proposition

2.1]). Every Banach space B, with the weight of B less than or equal to N, is a

linear image of lx(x).

Theorems 1 and 2 are motivated by this result. Theorem 3 proves that the

universal spaces of Theorems 1 and 2 are homeomorphic to /,(«) for ap-

propriate cardinal N.

2. Proofs of Theorems.

Theorem 1. There is a separable F-space universal with respect to linear

codimension for all separable F-spaces.

Proof. Let H (I) be the space of all homeomorphisms of the unit interval

/ = [0, 1] onto itself that are the identity on the endpoints and satisfy the

following property:
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If a, b, c G [0, 1] with a < b + c, then F(a) < F(b) + F(c) for F G

H(I).The metric on H(I) is the supremum metric.

Pick a countable dense subset of H (I). Call it {g¡}f=x. Pick the rationals

in (0, 1] and enumerate them as {p¡)JLx. Let {/}°i, be an enumeration of

the countable number of elements resulting from replacing each g¡ in {g,}°li

by the countable number of elements {Pjg^JLi-

Define h to be the homeomorphism

A: [0,oo)-»[0,1),        h(r) = r/(l + r).

Then each/ induces an invariant, strictly monotone metric on R = (— oo, oo)

defined by

di(r,s)=f(h(\r-s\)).

d¡ is a metric since/ = pßk for some gk G H (I) and h(a) < h(b) + h(c) if

a < b + c, a, b, c G [0, oo). d¡(t, 0) < d¡(s, 0) if 0 < t < s, since both h and/

are strictly monotone. Finally,

di(t + s,r+s)=fl(h(\t-rs-(r + s)\))

= f,{KV-r\)) = di(t,r)

for all t, r, s G R. Thus d¡ is an invariant metric.

Now, let IIjl iR,- be the countable cartesian product of copies of R. Define

2(M) = {{*/) e .3 R;lM(*/>°)}r=. G 'i }•

Here /, = /,(i<o)- Then 2,(R, d) is an f-space under coordinatewise addition

and scalar multiplication and under the invariant metric 2,JLxdj(Xj, y) =

p({xj}, { vy}). Given this invariant metric p,

CO

K^Il-S^*,'0)
7=1

is called the associated F-norm. [Given an invariant metric p on an F-space,

the associated F-norm is defined to be | | = p(-, 0).]

We claim that (2/ (R, d/), \ \¡) is the required universal F-space. S/^R, d) is

clearly separable. Given a separable F-space (M, \ \), we may assume that the

F-norm is not only invariant but also strictly monotone on rays from the

origin and bounded by one. (See Eidelheit and Mazur [3].) Pick a countable

dense subset of M from M \ {0}, and call this collection {x,}°l|.

Look at the lines L, = {rx\r G R}, /' = 1,2,.... Then, for each i, (L¡, \ \¡)

is an F-space where | |, is | | restricted to L,. Let

s, =    sup    |jx,-|.< 1.
s£(0, oo)

Then | |, takes on values in [0, s¡) since | — x\ = \x\ by definition of an

F-norm and | | is strictly monotone so that | |,. cannot take on the supremum.

Define F¡: [0, s¡] -+ [0, s,] by
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ptr, _  f \(r/(si - r))xl\¡>      r*si>

Then F¡ is a homeomorphism of [0, s¡] onto itself since | | is strictly monotone.

Thus F(st • )/s¡ E H (I) since |  |,  satisfies the triangle inequality and is

strictly monotone. Also, F¡(s¡ ■ ) is a homeomorphism of [0, 1] onto [0, s¡].

Now, for Fx(sx ■ ) pick an element in {fj}JLi such that

sup   |F, (sxr) - fo(x)(r)\ <{.
relo, 1]

Then inductively select an element in {fj}JLx \ {/o(1), . . • ,/„(,_,)} for F¡(s¡ ■ )

such that supre|01]|F,(i/) - f„^(r)\ < 1/2'. This can be done since rational

scalar multiples of the {g,}°l, have been included in {f}f=x.

Define a linear operator A from 2, (R, d) to M by defining it on the

Schauder basis {^}J1, where

Sj-{1   \tJl      ̂ 2(R,4),

A: %(R,dj)^M,   A(Sj) =
i,

0,      j ¥= a(i) for any i,

Xj,    j = a(i) for some ('.

We claim that A is a continuous linear surjection.

A   is  into  since  F^s^) < 1/2' + faW(r)  and,   therefore,   [rjc,.^ < 1/2' +

da^(r, 0) for each i and any r E [0, 1]. Hence

2J   \ra(0Xi\¡< 2
;=1

- +4ko(',,«)>0)

= i + 2 ¿„(oKo), o)
i=i

<co   for{0}e2(R,4)-
'l

Note that the induced F-norm on R induced by F¡(s¡ ■ ) is d(r, t) =

F,.(í,./¡(|r - t\)). Hence

í/(r,/) = F,(í//I(|r-/|))=|(r-/)x,.|,

To see that /I is continuous, let (ry}, {r/1} E 2/^R, dj), n = 1, 2, ... , and

suppose [r") —> {^}. Then look at the indices corresponding to a(i), i = 1,

2, . . . . All other coordinates go to zero under A. Then
CO 00

Ildoiú(üi),ro(¡))<2dj(r;,rJ).
i=i y=i

Now, given e > 0, choose NQ so that 2" +il/2" < e/4. Next, find each index

of the form o(i) such that a(i) < N0. Call these indices kx = a(ix), . . . , kt =

a(it). Then, given e/2NQ, pick a ô where 0 < 8 < e/4 such that F^sj) <

e/2N0 whenever dk(r, 0) < 8, j = 1, 2, . . . , t. Now, given S > 0, pick

Nx > N0 such that 2J1 ,(>/, /)) < <5 whenever « > TV,. Then for « > TV,,
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\*({'jm})-A({'j})\- 2 *<* - 2 '„c»*.i=i
00

< 2 |(^(0 - roU))xi\
i = i

< 2 1(^-^1+     2     IK« -'„«Kl
y-l o(/)>/V0+i

<^v0(2Ír)+     2

< e/2 + e/4 + e/4 = e.

^rioKo)' ra(i)) +

To see that A is surjective, let v G M. Again, look at {x,}°l,, the countable

dense set in M. Pick rß(X)xßm such that |v — ̂ (i)Jc^(1)| <{-. Next, since

{■*.}?-1 \ {Xßo)} is still dense in M, pick rß(2)xß(2) so that \(y - rß(X)xß0)) -

rß(i)xß(2)\ < 4 • Inductively, pick rß(n)xß(n) where xß(n) is chosen from

{X/},_1X {xßU)> • • • 'Xß(n-\)}

so that

\(y rß(\)xßW rß(n~\)Xß(n-\)) rß(n)xß(n)\   <   1/2".

Then

\rßO)xßw\ <\y - rßWxßw\ +|>'|<5+|>'|<5+ l>

\rß(r)xß(r\ ^\(y   rß(\)xßw) - rß(,2)xß(.i)\ +\y - r/}(i)-x/}(i)|

^ 4 T 2

|'ja<«>-*:>S<«>|   ^K^   _   rß(\)Xß(\) -   •   •   •    -  í-í(„-l)^(»-l))  -   >>(/0X/3(n)|

+ \(y   ~   rßWXßW  ~        '   '    ~   rß(n-2)Xß(n-2))   ~   rß(n- \)Xß(n- 1)|

<   1/2"   +   1/2"" '

Now, ^t-\rß(k)xß(k) e ^ since

OO

< 2 l^u)^*)! <l>'l+ 2 2

Select {r,} GS^R^by

oo

2   rß(k)xß(k)
k=]

ß(k)*ß(,k)
¿ = 1 k=\Ii 2*

= |v|+2.
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0 =
rß(k)    iïj ~ a( ß (k)) for some k,

^0 if j ¥= a( ß(k)) for any k.

To see that {rj} E 2/^R, df) note that

sup   \Fß(k)(Sß(k)r) - fn(ß(k))(r)\ < ( j )
e[o, 1] '     \¿ t

ß(k)

Thus, since da(ß(k))(rß(k), 0) = fa(/Hk))(h(rß(k))),

/8(A)
do(ß(k))(rß(k), 0) < (1/2)        + Fßik)(sß(k)h(rß(k)))

,ß(k)
= (\/2)p""+\rß(k)Xß(k)\ <(l/2)"w + 1/2* + 1/2

Therefore,

2 dj(rj, 0) = 2 d^ßik)){rßW, 0)
y-i A:=l

<2 (ï)
ß(k)

+ -L + -L-
2*      2*"1

< 1 + 3 < oo.

Clearly, A({rj}) = 2£L1/"/8(/t)x/8W = y. Hence A is surjective.

Thus A has all the properties required, and 2 / (R, d) satisfies the condi-

tions of the theorem.   □

Theorem 2. Given an infinite cardinal number X > 2"°, there is an F-space of

weight X universal with respect to linear codimension for all F-spaces of weight

less than or equal to X.

Proof. Let H (I) be as in Theorem 1. Then the cardinality of H (I) is 2"°.

Let {g,},eR be an enumeration of the elements of H (I). Also, the cardinality

of (0, 1] is 2"° as well. Let {/,},eR be a new enumeration containing 2"°

elements obtained by replacing each gt by the 2"° elements {rg,}r(E(p X].

Then each /, induces an invariant, strictly monotone metric on R defined

by d,(r, s) = f,(h(\r - s\)) just as in Theorem 1. Note that dt is bounded by

one. This gives all possible metrics on R with these properties.

Now, let IIA6ARA be the cartesian product of N copies of R. Here, the

cardinality of A is x. Define

2 (R,dt) = \{xtX) e n ( TI  Ra)|{4(*,a.O)} e /,(*))
/,(«) I (ERUSA ' !

where (t, X) is suitably re-indexed to give a correspondence with the x

coordinates of lx(x). Then 2/(lt)(R, d,) is an F-space under coordinates

addition and scalar multiplication, and under the F-norm |{x,a}|, =

"Z,xd,(xlX, 0). This can be shown to be the required universal space by going

through the same process as in Theorem 1. However, when you get to the part

where you pick/a(i) for F,(í( • ), you can pick/a(r) equal to Ft(s, ■ ) instead of

just near Ft(s, ■ ). Therefore, you have the restricted metric | |  from | | as the
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chosen induced metric. This, in fact, makes it easier to show that the linear

map A is into and continuous. Since each metric is repeated N times, you can

still insure that you choose different directions from the origin in constructing

A and in showing that A is onto. Thus, the theorem follows.   □

Theorem 3. 2/(l))(R, d¡) is homeomorphic to /,(«).

Proof. Define

H:   2 (R,4) •2
/,(«)

R.
1 +1

*y h({ra}) = {qara}

where each qa is chosen so that when ra =£ 0, qa is the unique positive real

number such that

dl(^a,0) = sl\\qara\\/(l+\\qara\\).

H sends a zero coordinate to the corresponding zero coordinate. Here,

s, = supre(0oo) d,(r, 0) and || • || is the absolute value on R. A unique such qa

exists for each a when ra ^ 0 since dt and i(|| ■ ||/(1 + || • ||) are both strictly

monotone on rays from the origin. H is thus a homeomorphism.

Now, for the separable case, let {p¡}fLx be the enumeration of the rationals

in (0, 1] used in Theorem 1. Then, for each i, M¡ = S^R, p,\\ ||/(1 + || ||)) is

homeomorphic to /, by the identity map. The argument is similar to that of

Lemma  6  of  [6].   But  then,   by  re-indexing  the  coordinates  of

2(^,1111/0+1111))'

we have

2 k i +i = 2 m„ 2
k = \ 1   +1

J/tJ

Finally, 2,{M„ 2?_,[aII 11/0 + II II)]*) is homeomorphic to /, by Theo-
rem 3 of [6] and the fact that /, is homeomorphic to II°1,(/,),. (Bessaga

proved in [2] that lx(K) is homeomorphic to n°L,(/i(N)),.)

For the nonseparable case, let S, = (1/2', 1/2'-1] for /' = 1, 2.For

each i define

Af, {'*} e n ( n Rx) 2  2
s rA

JES,XëA    1   +\\rs\\\

<  OO

with the obvious metric. The argument now proceeds as in the separable case.

Each M¡ is homeomorphic to /,(k) and this implies 2/ (K)(R, j,|| ||/(1 + || ||)) is

homeomorphic to /,(n).    D
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