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F-SPACES UNIVERSAL WITH RESPECT TO LINEAR
CODIMENSION

WESLEY E. TERRY

ABSTRACT. Rolewicz raised the question in [5] as to whether there existed a
separable F-space X, such that any other separable F-space Y is the image
of X, under a continuous linear operator. This can be equivalently phrased
as the question [5, Problem I1.4.3, p. 47): Does there exist a separable
F-space universal for all separable F-spaces with respect to linear codimen-
sion? Theorem 1 proves the existence of such a separable F-space. Theorem
2 generalizes this idea to larger cardinals.

1. Introduction. A metric linear space X is called an F-space if X has a
complete metric p with the property that p(x + z,y + z) = p(x, y) for all x,
y, z € X. Such a metric, p, is said to be invariant. By a theorem of Kakutani
[5, Theorem I.1.1, p. 12}, every metric linear space has an invariant metric. By
a theorem of Klee [5, 1.4.3, p. 24] if X is a topologically complete metric linear
space then an invariant metric for the topology on X is a complete metric on
X.

Let A be a set of cardinality 8. The space /,(8) is defined to be the set of all
real functions r = {r,} defined on the set A with at most a countable number
of nonzero elements and with X, |r,| < co. The norm on /\(R) is ||r|| = Z,|r,].

Schauder proved the following theorem:

THEOREM (Schauder, see Banach-Mazur [1, p. 111] and Klee [4, Proposition
2.1]). Every Banach space B, with the weight of B less than or equal to R, is a
linear image of I,(R).

Theorems 1 and 2 are motivated by this result. Theorem 3 proves that the
universal spaces of Theorems 1 and 2 are homeomorphic to /(%) for ap-
propriate cardinal .

2. Proofs of Theorems.

THEOREM 1. There is a separable F-space universal with respect to linear
codimension for all separable F-spaces.

PrOOF. Let H (I) be the space of all homeomorphisms of the unit interval
I = [0, 1] onto itself that are the identity on the endpoints and satisfy the
following property:

Received by the editors May 17, 1976.
AMS (MOS) subject classifications (1970). Primary 46A15, 54B99; Secondary 57A17.
© American Mathematical Society 1977

59



60 W. E. TERRY

If a, b, c €[0, 1] with a < b + ¢, then F(a) < F(b) + F(c) for F €
H (I).The metric on H (/) is the supremum metric.

Pick a countable dense subset of H (I). Call it { g;}?,. Pick the rationals
in (0, 1] and enumerate them as { p,}?2,. Let { f;}32, be an enumeration of
the countable number of elements resulting from replacing each g; in { g},
by the countable number of elements { p;g;} 72 -

Define 4 to be the homeomorphism
h: [0, 0) —[0,1),  h(r)y=r/(1+r).

Then each f; induces an invariant, strictly monotone metric on R = (— o0, o)
defined by

d,(r, s) = f,(h(Jr = s1))-
d; is a metric since f; = p;g, for some g, € H(I) and h(a) < h(b) + h(c) if
a<b+cab,c€]0, 0).d(t0) <d(s,0)if 0 <t < s,since both h and f,
are strictly monotone. Finally,

d(t+s,r+5s) =fi(h(|t +s—(r+ s)]))
= J(h(t = ) = d (6)

for all ¢, r, s € R. Thus 4, is an invariant metric.
Now, let II72 |R; be the countable cartesian product of copies of R. Define

S®4) = {() < [ Ri(40,0)7, =1 |

Here /; = [;(%). Then X, (R, d)) is an F-space under coordinatewise addition
oo

and scalar multiplication and under the invariant metric 272 ,d(x;, y) =
p({x;}, {»;})- Given this invariant metric p,

(53, 3 45,0

is called the associated F-norm. [Given an invariant metric p on an F-space,
the associated F-norm is defined to be | | = p(-, 0).]

We claim that (2, (R, @), | |;) is the required universal F-space. 2, (R, @) is
clearly separable. Given a separable F-space (M, | |), we may assume that the
F-norm is not only invariant but also strictly monotone on rays from the
origin and bounded by one. (See Eidelheit and Mazur [3].) Pick a countable
dense subset of M from M \ {0}, and call this collection {x;}% .

Look at the lines L, = {rx;/r ER},i=1,2,.... Then, for each i, (L, ||,
is an F-space where | |, is | | restricted to L,. Let

5; = sup |sx, < L
s€(0, )
Then | |; takes on values in [0, 5;) since | — x| = |x| by definition of an

F-norm and | | is strictly monotone so that | |, cannot take on the supremum.
Define F;: [0, 5;] — [0, 5;] by
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Fi(r) = [lf’/ (s = )xl, r# s

; r=s,.

Then F, is a homeomorphism of [0, s;] onto itself since | | is strictly monotone.
Thus F(s;-)/s; € H(I) since | |; satisfies the triangle inequality and is
strictly monotone. Also, F;(s; - ) is a homeomorphism of [0, 1] onto [0, s,].

Now, for F(s, - ) pick an element in { f;}°2, such that

sup |Fy(syr) = for(7)| <3
relo, 1]

Then inductively select an element in { £}72,\ { £,y - - - » fo4=1)} for Fi(s;*)
such that sup, o | Fi(s;r) — fo(n| < 1/ 2'. This can be done since rational
scalar multiples of the { g;}{, have been included in { f;}2,.

Define a linear operator 4 from X (R, d) to M by defining it on the
Schauder basis {§;};2., where

_ [0, i#],
= { Loi=,

5 €S (R.4),
1

0, j# a(i)foranyi,

: > 4; M9 A(%) =
4 IZl(R 4) - (%) (xj, J = o(i) for some i.

We claim that A4 is a continuous linear surjection.
A is into since F(s;r) < 1/2'+ f,(r) and, therefore, |rx| < 1/2'+
d,(r, 0) for each i and any r € [0, 1]. Hence

o) o0 1
> LGRS > [ 5 +d, iy (Fo0i 0)]
i=1 i=1

=1+ 2 di)(ru» 0)

i=1

< oo for {r;} EZ(R,dj).

Note that the induced F-norm on R induced by Fi(s;-) is d(r, t) =
F.(s;h(|r — t])). Hence

d(r,t) = F(ssh(jr — 1)) =|(r — x|,

To see that 4 is continuous, let {r;}, {r"} EZ, (R, d),n=1,2,...,and
suppose {r"} — {r;}. Then look at the indices corresponding to o(i), i = 1,
2, . ... All other coordinates go to zero under 4. Then

[o ] (e <]
21 dyi(To(i)s To(n) < 21 a(r, 1;)-
= Jj=
Now, given & > 0, choose N, so that £, ;1/2" < &/4. Next, find each index
of the form (i) such that (i) < N,. Call these indices k, = o(i}), ..., k, =
o(i,). Then, given ¢/2N,, pick a 8 where 0 < § < ¢/4 such that F,(s;r) <
¢/2N, whenever dkj(r, 0)<é, j=1, 2,...,t. Now, given § >JO,/pick
- N, > Ny such that 372 ,(r/", r;) < § whenevern > N,. Thenforn > N,
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!A({':In}) - A({rj})l = io:l o T i?]’o(i)xi

o0
<X (i = raw)X

i=1

< 2 |(rk - rk)xljl-’- I('ﬁ(i) - ro(i))'xil

0(1)>N0+1
1
< No( ) + 2 dyiy(raiy o) + =
2N, a(i)> No+1 2
<ef2+ef/d+e/d=c¢

To see that 4 is surjective, let y € M. Again, look at {x;}72 H the countable
dense set in M. Pick rgyxg., such that |y — rgqxp)| <3 1. Next, since
- o . .
{(x)2,\ {xﬁl(”} is still dense in M, pick rgqxg( so that Iy = rsayXsay =
ray*p)l < 3- Inductively, pick rg,xg(,y Where xg,, is chosen from

{xi}:o-l\ {xgy - -+ Xp(a=1)}
so that

|(¥ = rgayXpay = * * * = Tatn-1Xp(n-1) ~ FpmXpm| < 1/2".
Then

lrsmXa| <|Y — rsayXxp) +y|<5+||<3+ 1,

Irs@Xs@| <|(¥y = rsayXsm) = rsXp| +1¥ — rsayXam)

<i+3
IreemXaem| <|(¥ = TsayXpmy = * * * = Tatn-1)Xp(n-1) ~ Ta(mXpm)|
+|()’ - rgayXpmy — T ’p(n-z)xp(n-z)) - rﬁ(n—l)xB(n—l)I

<1/2" + 12!

Now, Z¥_ \7guyXpk) € M since

o0 0 0 l
D rswXsw| < 2 rewXgwl <|y|+ 2 2 e =|y|+ 2.
k=1 k=1 k=

Select {r;} € 2, (R, d) by
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0 if j # o( B (k)) for any k.
To see that {r;} € 2, (R, d) note that

{’p(k) if j = o( B (k)) for some k,
r. =
J

1 B (k)
sup | Faa(Spnr) — fapun(r)| < ( 5) :
relo, 1

Thus, since d, 54"y 0) = Soc (A7)
)
d, pan(ramn 0) < (1/2)P% + Faoy(Spaoh (raw)))
= (1/2)"® + |rgoxs0| <(1/2)%% + 1/2% + 172+,

Therefore,

[e o] o0
2 d(r,0) = kzl d, ) (pcky 0)

Jj=1

) 1 B (k) 1 1
< = — < .
El[(z) ot 2k—l] 1+3< o
Clearly, A({r;}) = Z¥_173)%p) = V- Hence 4 is surjective.
Thus A has all the properties required, and X, (R, d)) satisfies the condi-
tions of the theorem. [J

THEOREM 2. Given an infinite cardinal number & > 2™, there is an F-space of
weight & universal with respect to linear codimension for all F-spaces of weight
less than or equal to ¥.

PrROOF. Let H (1) be as in Theorem 1. Then the cardinality of H () is 2.
Let { g,},cr be an enumeration of the elements of H (/). Also, the cardinality
of (0, 1] is 2" as well. Let {f,},cg be a new enumeration containing 2%
elements obtained by replacing each g, by the 2" elements {rg,},c ()

Then each f, induces an invariant, strictly monotone metric on R defined
by d,(r, s) = f,(h(|Jr — s|)) just as in Theorem 1. Note that 4, is bounded by
one. This gives all possible metrics on R with these properties.

Now, let II,c,R, be the cartesian product of & copies of R. Here, the
cardinality of A is 8. Define

S ®a) = { () € T ( TR Ji(d 0500 € 1,9

1 (%) IER ‘AEA

where (f, A) is suitably re-indexed to give a correspondence with the &
coordinates of /(%). Then X, (R, 4) is an F-space under coordinates
addition and scalar multiplication, and under the F-norm [{x,}|, =
2 ad,(x,, 0). This can be shown to be the required universal space by going
through the same process as in Theorem 1. However, when you get to the part
where you pick f,, for F,(s,- ), you can pick f,,, equal to F,(s, - ) instead of
just near F,(s, - ). Therefore, you have the restricted metric | |, from | | as the
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chosen induced metric. This, in fact, makes it easier to show that the linear
map A is into and continuous. Since each metric is repeated & times, you can
still insure that you choose different directions from the origin in constructing
A and in showing that 4 is onto. Thus, the theorem follows. [

THEOREM 3. 2, (R, d) is homeomorphic to I,(K).

PrOOF. Define

s |
H: 2 (R’ dt)—’ 2 (R’ #) byh({ra}) = {qara}

1 () I ) il
where each g, is chosen so that when r, # 0, g, is the unique positive real
number such that

A, (qurer 0) = s[|garall/ (1 +|9ara])-
H sends a zero coordinate to the corresponding zero coordinate. Here,
5, = SUP,¢(0,00) 4(r, 0) and || - || is the absolute value on R. A unique such g,
exists for each a when r, # 0 since 4, and s, - || /(1 + || - ||) are both strictly
monotone on rays from the origin. H is thus a homeomorphism.

Now, for the separable case, let { p;}?2, be the enumeration of the rationals
in (0, 1] used in Theorem 1. Then, for each i, M, = =, (R, p;|| ||/(1 + || |])) is
homeomorphic to /; by the identity map. The argument is similar to that of
Lemma 6 of [6]. But then, by re-indexing the coordinates of

S (Ros 1/ D)
we have

Pl |
L+

)

Finally, 2, (M,, Z¢¥_,[pl II/(1 + || ID],) is homeomorphic to /; by Theo-
rem 3 of [6] and the fact that /; is homeomorphic to II32,(/,);. (Bessaga
proved in [2] that /,(X) is homeomorphic to [I2,(/,(¥));.)

For the nonseparable case, let 5, = (1/2’, 1/2"Yfori=1,2,.... For
each i define

M,.=({rs>\}e H(H )

SES; \AEA s

12.(“’ ls;”|:ln)=2[ 2

h

s g Sl w}

SES; AEA 1 +" X"

with the obvious metric. The argument now proceeds as in the separable case.
Each M, is homeomorphic to /(%) and this implies T, (R, s,|| ||/(1 + || ) is
homeomorphic to /;(8). O
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