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ON THE HEIGHTS OF GROUP CHARACTERS

R. J. HAGGARTY

Abstract. For a finite /»-soluble group G we derive a bound on the heights

of the irreducible complex characters of G lying in a />-block B. This bound

depends on the prime p and the exponent d of a defect group of B. We show

by examples that this bound is of the right order of magnitude.

Let G be a finite group of order peg0, where p is a fixed prime, e is an

integer > 0, and ig0,p) = 1. In the theory of modular representations, the

characters of the irreducible complex representations of G may be partitioned

into disjoint sets, the so-called blocks of G for the prime p. Associated with

each block B is a/?-subgroup D of G of order/?'', unique up to conjugacy in

G. d is called the defect of the block B. If x is an irreducible complex

character of G, or as we shall say, an ordinary character of G, and x lies in a

block B, written x £ B, then x has degree divisible by p to the exponent

(e - d + hix))- The nonnegative integer «(x) is called the height of x-

In [4] Fong proves the following: Let G be a finite /»-soluble group and B

be a block of G for the prime /?. Suppose that B has defect group D and let

Z(D) denote the centre of D. Then for each ordinary character x £ B we

have hix) < VP(\D '■ Z(Z))|) where v (t) denotes the exponent of/? dividing t.

A slight modification of Fong's proof yields that for d > 2, h(x) never

exceeds (d - 2). Brauer and Feit [2] obtain this bound for an arbitrary finite

group. In this paper we prove the following result.

Theorem. Let G be a finite p-soluble group with a block B of defect d > 2.

Then there exists a function f(p, d) such that h(x) < /(/?, d) for all ordinary

characters x E B;

f\P,d) =

m ifp = 2,

(p2-p + l)

(F+l)  jd-I)

ÍP) 2

- ( —r— J     ifp is an odd Fermât prime,

ifp is any other prime.

We give examples to show that this bound is of the right order of

magnitude.
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Lemma 1. Let G be a finite p-soluble group and B be a block of G with defect

group D, of order pd. Suppose that H<\G, then there exists an irreducible

constituent of x\h< sdy Q> sucb h(x) < h(0) + vp(\G : H\). h(9) denotes the

height of 9 over the block b of H with 9 E b and h(\) denotes the height of x

over B.

Proof. Choose a series G = G, > G2 > ■ ■ ■ > G, = H such that G,+ 1 is

a maximal normal subgroup of G, for /' = 1, . . . , r - 1. Define e, = ^(|G,|).

Now choose ordinary characters Xi> • • • > Xr sucri mat X, 's an ordinary

character of G, and x = Xi> and X + i 's an irreducible constituent of x,

restricted to G,+1. Now there exist blocks Bx, . . . , Br with B¡ a block of G,

containing x for /' = 1, . . . , r. Let 9 = Xr ana< hence Br = b. These condi-

tions mean that B¡ covers Bi+X in the sense of Brauer [1]. Finally let D¡ be a

defect group of B¡ for each i and suppose that di = defect of B¡. We have

»>(deg Xi) = e¡ - di + h(x¡)      for / = 1, . . . , r.

When |G, : GI+1| is coprime to p then by Cliffords theorem »^(deg x,)

equals ^(deg x + ))- Clearly e, = e,+1 and by [1, 2E] d¡ = di+x. Thus h(x¡)

= h(Xj+x). Otherwise |G, : G,+1| = p and Cliffords theorem yields that

"„(degX) < "/,(degx+i)+ l-

Also e, = e, + 1 + 1 and by [3], d¡ < di+x + I. We conclude that in this case

h(X¡) < AÖG+i) + 1-
Hence h(x) = h(Xx) < h(x,) + vp(\G : H\) = h(9) + vp(\G : H\) as re-

quired.

Lemma 2. If G is a finite p-soluble group which is faithfully and irreducibly

represented on a vector space V of dimension n over GF(p) then ï^,(|C7|) does

not exceed X(p, n) where

X(p, n) =

(n - 1) ifp = 2,

(np)/ (p — l)2     if p is an odd Fermât prime,

n/ (p — 1) otherwise.

Proof. j>2(|G|) < n - 1 by Huppert [7, Satz 14]. For odd p a paper of

Winter [8] yields that

",(|G|) <
Í-0 p'(p - l)

for/? Fermât,

2 —: for/) not Fermât.
, = i P'

Since for \x\ < 1, S°°_0x' = 1/(1 - x) our lemma follows easily.

Lemma 3. 77 G is a finite p-soluble group with Opp(G) » Op.(G) X Op(G)

and if \Op(G): $>(Op(G))\ = p" where \Op(G)\ = pm then

vp(\G\) < m + X(p,n).



ON THE HEIGHTS OF GROUP CHARACTERS 215

Proof. By [5, 1.2.5] G/Op,p(G) is faithfully represented on Op.p(G)/F

where F/Op,(G) = $(Op,p(G)/Op,(G)). Thus under our hypotheses

G / Op,p(G)is faithfully represented on Op(G)/<b(Op(G)). Let L„ . . . ^denote

the /?-chief factors of G lying between* OpiG) and <J>(0p(G)). Then C =

D i=1CG(L,) > OppiG) since OppiG) centralizes all/?-chief factors. For each

/ = 1, . .., s we have that G/ CciL/) is a faithful irreducible subgroup of

GL(«,,/?) where «, is just the rank of Lt. Since C/Op,piG) is merely a group of

automorphisms of a /?-group which stabilizes a normal series for that group

we conclude that C/Op,piG) is a/?-group and thus C = OppiG).

Now G/Op,piG) is isomorphic to a subgroup of G/CGiLx) X • • • X

G/ CciLs) so in particular

•>(|G:0/>(<?)|)<2%(|G:Ci,(I,)|).
i

Since X(/?, A:) is linear in the second variable, and using Lemma 2 we see that

^(|G|) < m + \(/?, «) as required.

Proof of Theorem. We proceed by induction on the order of G. By [4, 2B

and 2D] we may assume that all blocks of G have maximal defect, so

d= pp(\G\). Furthermore Op(G) is cyclic and central in G so O .(G) =

Op,(G) X Op(G). Let H = Op(G) and set \H\ = pm and \H : <P(H)\ = p".

Let 9 be an irreducible constituent of x\h- Now vp(\G : H\) = d — m and

thus by Lemma 1 h(x) < h(9) + d — m. We consider two possibilities:

(a) H is abelian. In this case h(9) = 0 and by Lemma 3, since « < m we

have that d < m + X(p, m). When/? = 2, \(2, m) = m - 1 and so d < 2w —

1. Hence h(x) < (d — l)/2. For/? an odd Fermât prime a similar calculation

yields h(x) < (pd)/(p2 - p + 1). Finally for p odd and not Fermât, using

Lemma 2 again we deduce that h(x) < d/p. These three bounds are less than

the ones appearing in the statement of the theorem.

(b) H is nonabelian. Now h(9) < (m — l)/2 since 9 is a character of a

nonabelian/?-group of order/?"1. Also H nonabelian implies that « < m - 1.

Thus «(x) < d - (w 4- l)/2 by Lemma 1 and d < m + \(p, m - 1) by

Lemma 3. For/? = 2, d < 2(m — 1) and so «(x) < (3i/ — 4)/4. When/? is an

odd Fermât prime then d < (m(p2 - /? + 1) — /?)/(/? — l)2 and thus h(x)

< ((p2 + \)/(p2 — p + l))(d - l)/2). Finally for non-Fermat primes /?,

d < (mp - \)/(p - 1) and a brief calculation yields

h(x)<((p + \)/p)((d-\)/2).

Our theorem is now proved.

The theorem is best possible in the following sense: Given an odd integer

d > 1 choose /? to be a prime with p > d. Now there exists an extraspecial /?-

group of order pd; this group possesses an ordinary character of height

\(d - 1). We have so chosen things that \(d - 1) is the greatest integer less

than f(p,d). We give less trivial examples for/? = 2 andp = 3 below.

(1) Let G, s GL(2,3), the group of 2 X 2 matrices over the Galois field of

three elements, for / = 1,2, ...,«. Form the central product G(n)

= G, YG2 Y■ ■ • YGn (see [6, 1.9.10]). Let Z(G¡) = gp{z¡: z} - 1} then G(n)
s (G, X G2 X ••• X G„)/A where A = gp{zxz2x ,z2zjx,.. .,znzx~x). Now G
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is a 2-soluble group and Ox(G(n)) = 1. Thus G(n) possesses one block for the

prime 2 and hence this has defect d = 3« + 1. G, has a character 9¡ of degree

four such that 0¡(z¡) = -4. Form 9X ® 92 ® ■ • • <8> 9„ = x, an irreducible

character of G(n), since one easily checks that A < Kerx- We have that

h(x) = 2n = 2(d-l)/3.
(2) Let E be the extraspecial 3-group of order 27 and exponent 3. Since

SL(2,3 ) is isomorphic to a subgroup of the automorphism group of E, we may

form the semidirect product of E by SL(2,3). Denote this group by H. H has

a centre of order 3 and furthermore has an irreducible character of degree 9,

say a. If Z(H) = gp{z¡: zj = 1} then a(z¡) = 9w and a(zf) = 9<o2 where to is

a primitive cube root of unity. As in the previous example we construct H(n),

the central product of n copies of H. H(n) is a 3-soluble group in which

Oy(H(n)) — 1 and so H(n) has a unique block for the prime 3 and this has

defect d = 3n + 1. The character \L = tensor product of n copies of a, is an

irreducible character of H(n). \p has height 2n = 2(d - l)/3.

We have shown that if g(p,d) is the precise bound on the heights of

characters of /^-soluble groups then

2(d- l)/3 <g(2,d) <3(¿- l)/4,

2(d- l)/3<g(3,d)<5(d- l)/7.

In fact there exist examples for all primes p of /7-soluble groups G with a

p -block B, of defect d, containing an ordinary character of height exceeding

(d - l)/2.
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