ON THE HEIGHTS OF GROUP CHARACTERS

R. J. HAGGARTY

Abstract

For a finite p-soluble group G we derive a bound on the heights of the irreducible complex characters of G lying in a p-block B. This bound depends on the prime p and the exponent d of a defect group of B. We show by examples that this bound is of the right order of magnitude.

Let G be a finite group of order $p^{e} g_{0}$, where p is a fixed prime, e is an integer $\geqslant 0$, and ($\left.g_{0}, p\right)=1$. In the theory of modular representations, the characters of the irreducible complex representations of G may be partitioned into disjoint sets, the so-called blocks of G for the prime p. Associated with each block B is a p-subgroup D of G of order p^{d}, unique up to conjugacy in $G . d$ is called the defect of the block B. If χ is an irreducible complex character of G, or as we shall say, an ordinary character of G, and χ lies in a block B, written $\chi \in B$, then χ has degree divisible by p to the exponent $(e-d+h(\chi))$. The nonnegative integer $h(\chi)$ is called the height of χ.

In [4] Fong proves the following: Let G be a finite p-soluble group and B be a block of G for the prime p. Suppose that B has defect group D and let $Z(D)$ denote the centre of D. Then for each ordinary character $\chi \in B$ we have $h(\chi) \leqslant \nu_{p}(|D: Z(D)|)$ where $\nu_{p}(t)$ denotes the exponent of p dividing t.

A slight modification of Fong's proof yields that for $d \geqslant 2, h(\chi)$ never exceeds $(d-2)$. Brauer and Feit [2] obtain this bound for an arbitrary finite group. In this paper we prove the following result.

Theorem. Let G be a finite p-soluble group with a block B of defect $d \geqslant 2$. Then there exists a function $f(p, d)$ such that $h(\chi) \leqslant f(p, d)$ for all ordinary characters $\chi \in B$;

$$
f(p, d)= \begin{cases}\left(\frac{3 d-4}{4}\right) & \text { if } p=2, \\ \frac{\left(p^{2}+1\right)}{\left(p^{2}-p+1\right)}\left(\frac{d-1}{2}\right) & \text { if } p \text { is an odd Fermat prime }, \\ \frac{(p+1)}{(p)} \frac{(d-1)}{2} & \text { if } p \text { is any other prime. }\end{cases}
$$

We give examples to show that this bound is of the right order of magnitude.

[^0]Lemma 1. Let G be a finite p-soluble group and B be a block of G with defect group D, of order p^{d}. Suppose that $H \triangleleft G$, then there exists an irreducible constituent of $\left.\chi\right|_{H}$, say θ, such $h(\chi) \leqslant h(\theta)+\nu_{p}(|G: H|) . h(\theta)$ denotes the height of θ over the block b of H with $\theta \in b$ and $h(\chi)$ denotes the height of χ over B.

Proof. Choose a series $G=G_{1} \geqslant G_{2} \geqslant \cdots \geqslant G_{r}=H$ such that G_{i+1} is a maximal normal subgroup of G_{i} for $i=1, \ldots, r-1$. Define $e_{i}=\nu_{p}\left(\left|G_{i}\right|\right)$. Now choose ordinary characters $\chi_{1}, \ldots, \chi_{r}$ such that χ_{i} is an ordinary character of G_{i} and $\chi=\chi_{1}$, and χ_{i+1} is an irreducible constituent of χ_{i} restricted to G_{i+1}. Now there exist blocks B_{1}, \ldots, B_{r} with B_{i} a block of G_{i} containing χ_{i} for $i=1, \ldots, r$. Let $\theta=\chi_{r}$ and hence $B_{r}=b$. These conditions mean that B_{i} covers B_{i+1} in the sense of Brauer [1]. Finally let D_{i} be a defect group of B_{i} for each i and suppose that $d_{i}=$ defect of B_{i}. We have

$$
\nu_{p}\left(\operatorname{deg} \chi_{i}\right)=e_{i}-d_{i}+h\left(\chi_{i}\right) \quad \text { for } i=1, \ldots, r
$$

When $\left|G_{i}: G_{i+1}\right|$ is coprime to p then by Cliffords theorem $\nu_{p}\left(\operatorname{deg} \chi_{i}\right)$ equals $\nu_{p}\left(\operatorname{deg} \chi_{i+1}\right)$. Clearly $e_{i}=e_{i+1}$ and by [1, 2E] $d_{i}=d_{i+1}$. Thus $h\left(\chi_{i}\right)$ $=h\left(\chi_{i+1}\right)$. Otherwise $\left|G_{i}: G_{i+1}\right|=p$ and Cliffords theorem yields that

$$
\nu_{p}\left(\operatorname{deg} \chi_{i}\right) \leqslant \nu_{p}\left(\operatorname{deg} \chi_{i+1}\right)+1 .
$$

Also $e_{i}=e_{i+1}+1$ and by [3], $d_{i} \leqslant d_{i+1}+1$. We conclude that in this case $h\left(\chi_{i}\right) \leqslant h\left(\chi_{i+1}\right)+1$.

Hence $h(\chi)=h\left(\chi_{1}\right) \leqslant h\left(\chi_{r}\right)+\nu_{p}(|G: H|)=h(\theta)+\nu_{p}(|G: H|)$ as required.

Lemma 2. If G is a finite p-soluble group which is faithfully and irreducibly represented on a vector space V of dimension n over $G F(p)$ then $\nu_{p}(|G|)$ does not exceed $\lambda(p, n)$ where

$$
\lambda(p, n)= \begin{cases}(n-1) & \text { if } p=2 \\ (n p) /(p-1)^{2} & \text { if } p \text { is an odd Fermat prime } \\ n /(p-1) & \text { otherwise }\end{cases}
$$

Proof. $\nu_{2}(|G|) \leqslant n-1$ by Huppert [7, Satz 14]. For odd p a paper of Winter [8] yields that

$$
\nu_{p}(|G|) \leqslant \begin{cases}\sum_{i=0}^{\infty} \frac{n}{p^{i}(p-1)} & \text { for } p \text { Fermat } \\ \sum_{i=1}^{\infty} \frac{n}{p^{i}} & \text { for } p \text { not Fermat }\end{cases}
$$

Since for $|x|<1, \sum_{i=0}^{\infty} x^{i}=1 /(1-x)$ our lemma follows easily.
Lemma 3. If G is a finite p-soluble group with $O_{p^{\prime} p}(G) \cong O_{p^{\prime}}(G) \times O_{p}(G)$ and if $\left|O_{p}(G): \Phi\left(O_{p}(G)\right)\right|=p^{n}$ where $\left|O_{p}(G)\right|=p^{m}$ then

$$
\nu_{p}(|G|) \leqslant m+\lambda(p, n) .
$$

Proof. By [5, 1.2.5] $G / O_{p^{\prime} p}(G)$ is faithfully represented on $O_{p^{\prime} p}(G) / F$ where $F / O_{p^{\prime}}(G)=\Phi\left(O_{p^{\prime} p}^{\prime}(G) / O_{p^{\prime}}(G)\right)$. Thus under our hypotheses $G / O_{p^{\prime} p}(G)$ is faithfully represented on $O_{p}(G) / \Phi\left(O_{p}(G)\right)$. Let L_{1}, \ldots, L_{s} denote the p-chief factors of G lying between $O_{p}(G)$ and $\Phi\left(O_{p}(G)\right)$. Then $C=$ $\cap_{i=1}^{s} C_{G}\left(L_{i}\right) \geqslant O_{p^{\prime} p}(G)$ since $O_{p^{\prime} p}(G)$ centralizes all p-chief factors. For each $i=1, \ldots, s$ we have that $G / C_{G}\left(L_{i}\right)$ is a faithful irreducible subgroup of $G L\left(n_{i}, p\right)$ where n_{i} is just the rank of L_{i}. Since $C / O_{p^{\prime} p}(G)$ is merely a group of automorphisms of a p-group which stabilizes a normal series for that group we conclude that $C / O_{p^{\prime} p}(G)$ is a p-group and thus $C=O_{p^{\prime} p}(G)$.
Now $G / O_{p^{\prime} p}(G)$ is isomorphic to a subgroup of $G / C_{G}\left(L_{1}\right) \times \cdots \times$ $G / C_{G}\left(L_{s}\right)$ so in particular

$$
\nu_{p}\left(\left|G: O_{p^{\prime} p}(G)\right|\right) \leqslant \sum_{1}^{s} \nu_{p}\left(\left|G: C_{G}\left(L_{i}\right)\right|\right) .
$$

Since $\lambda(p, k)$ is linear in the second variable, and using Lemma 2 we see that $\nu_{p}(|G|) \leqslant m+\lambda(p, n)$ as required.

Proof of Theorem. We proceed by induction on the order of G. By [4, 2B and 2D] we may assume that all blocks of G have maximal defect, so $d=\nu_{p}(|G|)$. Furthermore $O_{p^{\prime}}(G)$ is cyclic and central in G so $O_{p^{\prime} p}(G)=$ $O_{p^{\prime}}(G) \times O_{p}(G)$. Let $H=O_{p}(G)$ and set $|H|=p^{m}$ and $|H: \Phi(H)|=p^{n}$. Let θ be an irreducible constituent of $\left.\chi\right|_{H}$. Now $\nu_{p}(|G: H|)=d-m$ and thus by Lemma $1 h(\chi) \leqslant h(\theta)+d-m$. We consider two possibilities:
(a) H is abelian. In this case $h(\theta)=0$ and by Lemma 3, since $n \leqslant m$ we have that $d \leqslant m+\lambda(p, m)$. When $p=2, \lambda(2, m)=m-1$ and so $d \leqslant 2 m-$ 1. Hence $h(\chi) \leqslant(d-1) / 2$. For p an odd Fermat prime a similar calculation yields $h(\chi) \leqslant(p d) /\left(p^{2}-p+1\right)$. Finally for p odd and not Fermat, using Lemma 2 again we deduce that $h(\chi) \leqslant d / p$. These three bounds are less than the ones appearing in the statement of the theorem.
(b) H is nonabelian. Now $h(\theta) \leqslant(m-1) / 2$ since θ is a character of a nonabelian p-group of order p^{m}. Also H nonabelian implies that $n \leqslant m-1$. Thus $h(\chi) \leqslant d-(m+1) / 2$ by Lemma 1 and $d \leqslant m+\lambda(p, m-1)$ by Lemma 3. For $p=2, d \leqslant 2(m-1)$ and so $h(\chi) \leqslant(3 d-4) / 4$. When p is an odd Fermat prime then $d \leqslant\left(m\left(p^{2}-p+1\right)-p\right) /(p-1)^{2}$ and thus $h(\chi)$ $\left.\leqslant\left(\left(p^{2}+1\right) /\left(p^{2}-p+1\right)\right)(d-1) / 2\right)$. Finally for non-Fermat primes p, $d \leqslant(m p-1) /(p-1)$ and a brief calculation yields

$$
h(\chi) \leqslant((p+1) / p)((d-1) / 2)
$$

Our theorem is now proved.
The theorem is best possible in the following sense: Given an odd integer $d \geqslant 1$ choose p to be a prime with $p>d$. Now there exists an extraspecial p group of order p^{d}; this group possesses an ordinary character of height $\frac{1}{2}(d-1)$. We have so chosen things that $\frac{1}{2}(d-1)$ is the greatest integer less than $f(p, d)$. We give less trivial examples for $p=2$ and $p=3$ below.
(1) Let $G_{i} \cong \mathrm{GL}(2,3)$, the group of 2×2 matrices over the Galois field of three elements, for $i=1,2, \ldots, n$. Form the central product $G(n)$ $=G_{1} Y G_{2} Y \cdots Y G_{n}\left(\right.$ see $\left[6\right.$, I.9.10]). Let $Z\left(G_{i}\right)=g p\left\{z_{i}: z_{i}^{2}=1\right\}$ then $G(n)$ $\cong\left(G_{1} \times G_{2} \times \cdots \times G_{n}\right) / \Delta$ where $\Delta=g p\left\{z_{1} z_{2}^{-1}, z_{2} z_{3}^{-1}, \ldots, z_{n} z_{1}^{-1}\right\}$. Now G
is a 2-soluble group and $O_{2^{\prime}}(G(n))=1$. Thus $G(n)$ possesses one block for the prime 2 and hence this has defect $d=3 n+1 . G_{i}$ has a character θ_{i} of degree four such that $\theta_{i}\left(z_{i}\right)=-4$. Form $\theta_{1} \otimes \theta_{2} \otimes \cdots \otimes \theta_{n}=\chi$, an irreducible character of $G(n)$, since one easily checks that $\Delta \leqslant \operatorname{Ker} \chi$. We have that $h(\chi)=2 n=2(d-1) / 3$.
(2) Let E be the extraspecial 3-group of order 27 and exponent 3. Since $\operatorname{SL}(2,3)$ is isomorphic to a subgroup of the automorphism group of E, we may form the semidirect product of E by $\operatorname{SL}(2,3)$. Denote this group by $H . H$ has a centre of order 3 and furthermore has an irreducible character of degree 9 , say α. If $Z(H)=g p\left\{z_{i}: z_{i}^{3}=1\right\}$ then $\alpha\left(z_{i}\right)=9 \omega$ and $\alpha\left(z_{i}^{2}\right)=9 \omega^{2}$ where ω is a primitive cube root of unity. As in the previous example we construct $H(n)$, the central product of n copies of $H . H(n)$ is a 3 -soluble group in which $O_{3^{\prime}}(H(n))=1$ and so $H(n)$ has a unique block for the prime 3 and this has defect $d=3 n+1$. The character $\psi=$ tensor product of n copies of α, is an irreducible character of $H(n) . \psi$ has height $2 n=2(d-1) / 3$.

We have shown that if $g(p, d)$ is the precise bound on the heights of characters of p-soluble groups then

$$
\begin{aligned}
& 2(d-1) / 3 \leqslant g(2, d) \leqslant 3(d-1) / 4 \\
& 2(d-1) / 3 \leqslant g(3, d) \leqslant 5(d-1) / 7
\end{aligned}
$$

In fact there exist examples for all primes p of p-soluble groups G with a p-block B, of defect d, containing an ordinary character of height exceeding $(d-1) / 2$.

References

1. R. Brauer, Some applications of the theory of blocks of characters of finite groups. IV, J. Algebra 17 (1971), 489-521. MR 43 \#7520.
2. R. Brauer and W. Feit, On the number of irreducible characters of finite groups in a given block, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 361-365.
3. P. Fong, Some properties of characters of finite solvable groups, Bull. Amer. Math. Soc. 66 (1960), 116-117. MR 22 \#2655.
4. - On the characters of p-solvable groups, Trans. Amer. Math. Soc. 98 (1961), 263-284. MR 22 \# 11052.
5. P. Hall and G. Higman, On the p-length of p-soluble groups and reduction theorems for Burnside's problem, Proc. London Math. Soc. (3) 6 (1956), 1-42. MR 17, 344.
6. B. Huppert, Endliche Gruppen. I, Die Grundlehren der math. Wissenschaften, Band 134, Springer-Verlag, Berlin and New York, 1967. MR 37 \# 302.
7. -_ Linear auflösbare Gruppen, Math. Z. 67 (1957), 479-518. MR 19, 729.
8. D. L. Winter, p-solvable linear groups of finite order, Trans. Amer. Math. Soc. 157 (1971), 155-160. MR 43 \# 2092.

Department of Pure Mathematics, University of Liverpool, Liverpool, Great Britain
Current address: Department of Mathematics, Oxford Polytechnic, Oxford, Great Britain

[^0]: Received by the editors March 28, 1975.
 AMS (MOS) subject classifications (1970). Primary 20C20.
 Key words and phrases. Modular representations, block, defect, height.

