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SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and

polished character, for which there is no other outlet.

A SIMPLE PROOF OF A THEOREM OF KY FAN

V. M. SEHGAL

Abstract. A simple proof of a fixed point theorem of Ky Fan in locally

convex spaces is constructed by means of his fixed point theorem for set

valued functions.

Let X and Y be topological spaces. A set valued function /: X -» 2r is

upper semicontinuous, u.s.c. (resp. lower semicontinuous, l.s.c.) iff for each

closed (open) subset B of Y, the set/"'(5) = (x:/(x) n B =£ 0) is a closed

(open) subset of X. We shall give a simple proof of the following theorem of

Ky Fan [3] using one of his well-known fixed point theorems for set valued

functions [2].

Theorem. Let X be a nonempty compact and convex subset of a locally

convex, Hausdorff topological vector space E and let f: X —> E be a continuous

mapping. Then either (a) / has a fixed point in X or (b) there exist an x G X

and a continuous seminorm p on E satisfying

0 < p(x - f(x)) = mm{p(y - f(x)):y GX).

Proof. Let *?P denote the family of all continuous seminorms on E. Let

p G 9. Define a mapping m = mp : X —> R + (nonnegative reals) by

(1) m(x) = min{p(y-f(x)):yGX}.

It follows (see Example 9, p. 252 in [1]) that m is continuous and for each

x G A' there is a_y(x) G X such that

(2) p(y(x)-f(x)) = m(x).

Define a set function g = gp : X -> 2X by

(3) g(x)={yGX:p(y-f(x)) = m(x)}.

Then by (2), g(x) ¥= 0 and it is clear by (3) that g(x) is a closed and convex

subset of X for each x G X. We show that g is u.s.c. Let A be a closed subset
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of X and let a net [xa: a E T) E g~x(A) converge to an x0 E X. This implies

that for each a E T, there is aya E g(xa) n A, that is,ya e A and

P{ya -f(xa)) = m(xa)-

Now, A being compact, there exist a y0 E A and a subnet {ys) of the net

{ya) such thatyä ^y0 and, hence,/7(y0 - /(x0)) = m(x0), that is,y0 E g(x0)

n /l. This implies that x0 E g~x(A). Thus g is u.s.c. Therefore, by Ky Fan's

Theorem 1 in [2], for each p E 9, there exists an xp E X such that xp E

gp(xp), that is,

(4) p(xp-f(xp)) = m(xp).

Now, if m(xp) > 0 for some p E 9, then (4) implies (b) for this p. If

m(xp) = 0 for each p E <3\ then by (4) Fp = {x E X: p(x - fx) = 0} is a

nonempty compact subset of X for each p E 9. Further, since for any finite

family A Q ®,p0 - 2peiJ> E 9, it follows that the family F = {F,: /7 E P)

has a finite intersection property. Consequently, there is an x E X such that

p(x - f(x)) = 0 for each/7 E 9. Thus/satisfies (a) for this x E X.

It may be remarked that the arguments in the above proof remain valid if/

therein is replaced by a continuous (u.s.c. and l.s.c.) set valued function /:

X —> 2E with f(x) a compact and convex subset of E for each x E X, where

in this case p(y — f(x)) = min{p(y — z): z E/(x)}. Thus, the above theorem

can be extended to such set valued functions.
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