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MAXIMAL LOGICS

JOSEPH SGRO1

Abstract. In this paper we present a general method for producing logics

on various classes of models which are maximal with respect to a Los

ultraproducts theorem. As a corollary we show that £Top is maximal. We also

show that these maximal logics satisfy the Souslin-Kleene property.

0. Introduction. In this paper we will prove that there is a strongest logic for

certain classes of models with a Los ultraproduct theorem.

The motivation comes from two sources. The first is the area of abstract

logic and model theory. P. Lindström first proved that E^ is the strongest

logic which satisfies the compactness and Löwenheim-Skolem theorem. K. J.

Barwise [B-l] expanded, simplified, and strengthened these results by formu-

lating abstract model theory in a category-theoretic framework.

The second area is topological model theory. In [S-l] we presented a

topological logic using generalized quantifiers. This logic is formed by adding

a quantifier symbol Qx to £uu, denoted by £(Q), where the interpretation of

Qx<b(x) is that the set defined by c>(x) is "open". Another logic, denoted by

£(ö")„Ew' ls f°rmed by adding Q"xx, ..., xn for each n so that the interpre-

tation of Q"xx, ..., xn$(xx,... ,xn) is that the set defined by <p(xi,... ,xn) is

"open in the /ith product topology". However, they are not the strongest logics

even though they both satisfy the compactness and Löwenheim-Skolem

theorems.

More recently, S. Garavaglia and T. McKee (see [G-l] or [McK]) have found

an extension, £Top, of £(Q) and £(Q")„ea which has many desirable proper-

ties, e.g. compactness, Löwenheim-Skolem, interpolation, and an isomorphic

ultrapowers theorem.

Hence, one is naturally led to the question of when there is a strongest logic

with first order properties. In this paper we give a construction of the strongest

logic with a Los ultraproduct theorem. We then show that these maximal

logics have the Souslin-Kleene property.

1. Abstract logics. We will assume that the reader is familiar with the basic

notions of first order model theory (e.g. many-sorted logics, ultrafilters, and

ultraproducts), topology and category theory.
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Take a first order model 91, q G 9(A), and form (91,q). (91,67) is called a

weak model. (If q is a topology then (91, £7) is called topological.) If we take a

class of weak models, Mod, we can give a definition of a logic on Mod.

Our notion of a logic is similar to that of Barwise [B-l] and we will assume

some familiarity with it. We take the set of objects to be £, the class of

languages. The morphisms will be the fc-morphisms in [B-l].

We define a logic, £*, to consist of a syntax and a semantics. The syntax is

a functor * on £, The elements £* for L £ £ are called £* sentences. The

functor * satisfies the following axiom:

Occurrence Axiom. For every £* sentence ¡j> there is a smallest (under G)

language L, in £ such that ¿> £ L* .

The semantics of £* is a relation Ne such that if (91, q) l=e <j>, then 91 is an

L-structure for some L in £ and (¡> G L*. It satisfies the following axiom:

Isomorphism Axiom. If (9Í, q) l=e* ¿. and (91, q) = (93, r) (i.e. (91, q), (93, r) are

isomorphic as 2-sorted structures), then (93, r) |=    $.

A logic on Mod which has important applications is the 2-sorted logic,

£Mod   (We win write g2 for £Mod when the meaning is understood.) For

L £ £, L is the set of 2-sorted sentences (i.e. built up from the constants,

predicates, functions, individual variables, set variables, equality and £ using

V, -1, 3x, 3 A). Note that £ has its standard meaning and is a logical

symbol. If (91,67) £ Mod then

(%q) \& +

will be the usual satisfaction relation.

We say that <j> in £* is ECt# (L) if and only if there is a uV £ L* such that

Modf (<f>) = Modf (*)

where

Mod¿ (<p) = {(9I,67)|(9l,67) NÊ ¿>,(9I,67) an L-structure}.

Suppose we have two logics, £*, £#, on a class of models, Mod. Then we

can define an ordering between them which is a measure of their strength of

expressibility. We say that £# is as strong as £*, £* > £*, if for every £*-

sentence d> there is an £  -sentence uV such that

(i) Every symbol occurring in \p occurs in ¿>, i.e. L, G L,.

(ii) Mod£* (¿>) = Mod£# (if-).
Again taking an arbitrary class of models, Mod, let T = [q\{)i,q) G Mod

for some 91} and suppose we are given an 5: T —> F, a map, so that

5(q) = 5(5(q)) and for each 67, if (21,?) £ Mod then (%,5(q)) G Mod . We

can define two logics based on this §'. Let ¿> be an Ej-sentence; then <#> is

called ^-invariant if and only if for all (9Í,67) G Mod,

(91,67) Fe2 <b if and only if (21, ̂ (¿7)) ^2 <J>.
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We define £2 to be the sublogic of £2 (on Mod) which consists of the 9-

invariant sentences. Taking Mod(íF) = {ÇH,9(q))\ÇH,q) E Mod}, we can

define a logic, t , on Mod(?F) as follows:

(a) the L^-sentences are just the ^-invariant ones,

(b) (K,9(q)) l=e^ «i> if and only if (8,9) ^2 </>.

If we are given a logic £* on Mod(iF) where if is as above then we can define

an £* on Mod. £* will have the same sentences as £* but the satisfaction

relation will be defined as follows: if (3l,<7) E Mod then

(31,7/) he* 4> if and only if (31, f (q)) Ne* </>.

This is the analogue of t=    for £*. We can then prove the following:

Lemma !.//£* < £2 then £* < £f.

Proof. Assume £* < £2 and suppose that <#> E L*. Since <f> is £Ce (L) we

have ù E L2 such that Mod 2 (<f>) = Mod 2 to) but then t/> is ^-invariant so

Mode  to) - Mod£* to).
Suppose we are given a class of models, Mod, such that if (31 , q ) E Mod,

y<X and U is an ultrafilter on X, then we have that Yly (3ly,<7y)

= (Lit/ ^v' IItj Qy) is in Mod (i.e. Mod is closed under ultraproducts, where

ut; ^y 's tne usual ultraproduct on the 3íy, y < X, and üt/ <?y = ^u $yt

6y G <7y}, where Uu[%] = {[/WW/M e 0y} 6 I/}). Furthermore if

^(ILy 3Ü = ^(Ilt/ ^(?y))> ^en we can give a notion of ultraproduct for £*

on Mod(iF) as follows:

n («r?T) - (n «r.^(n <?Y) ) G Mod^)-

This naturally leads to the question of whether there is an analogue to the

Los ultraproduct theorem for £* (i.e. Il¿(3ty,9y)N <í> if and only if

{y|(2ty,^(?y)) t=e* <b) E U for all <f> in £*). The following lemma clarifies the

situation.

Lemma 2. £* has a Los theorem (on Mod) if and only ift* has a Los theorem

(on Mod(S")).

Proof, (if) Assume £* is such that for all </> in £*, Yiiu (Wyly) t=£ <#> if and

only if [y\Ç$iy,9(qy)) ̂* ^ e u- By the definition of £*,

Wy,iy) - (n »Y> n iT) ̂  * «ff (n *T,*(n *T) ) ^e* o

iff(nay,^n^toy))^e^iff{y|(3íy^toy))Ne*<í»} E U

iff{y|(2ty,77y)Ne*<í»} G U.

(only if) The proof is similar to the if direction.
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Examples, (a) The most interesting example is topology. Let Mod¿

= {(91,q)167 is a base for a topology on A) and Topi^) be the topology

generated by 67. Then

Top(Top(67)) = Top(9),     Top( II ?T) = Top( II Top(c7Y))

and £Top has a Jtos theorem.

(b) Let ModFil = {C$l,q)\q is a base for a filter on A}; then Fi\(q) = the

filter on A generated by q. Hence Fil(<7) = Fil(FiI(<7)), Fil(n,y qy)

= FiKJIi/ Fil(t77 ) ) and £Fl1 satisfies a Los theorem.

(c) Let ModBA = {(%,q)\q C 9(A)). Then BA(q) (CBA(q)) is the (com-

plete) Boolean algebra generated by 67 and BA(n,y <7y)

= BA(UuBA(qy))(CBA(Uuqy) = CBA(T[uCBA(qy))). £BA and £CÍA
have Los theorems.

If £* has a Los theorem, we say that £* has the Los property.

The last result we need is a two-sorted version of Shelah's isomorphic

ultrapowers theorem.

Theorem. // (21,67) =e (93, r), then there is an ultrafilter U on a cardinal k

such that Uu («, q) = lily 0M-

Proof. This two-sorted version is analogous to the proof found in [C-N].

Now we can prove

Theorem. Let £* be a logic on Wloà(5). If £* has the Los property, then
£* < £f.

(One should note that we have not placed any restrictions on the size of L.)

Proof. Assume £* has the Los property. Assume furthermore that £* < £"*

and we will proceed to produce a contradiction.

We know that £* < £2 by Lemma 1 and the assumption. Let <#> £ L* be a

sentence such that <f> is not ECt (L). Since L is a set we have that | L| < X, X

some infinite cardinal.

Take U to be a A-regular ultrafilter on À which exists. By the definition of

regular, we know that there is a set X C U of power X such that each y £ A

belongs to only finitely many X G X.

Let {t^ylvex ancl (^«}r5<x l)e enumerations of L and 3E, respectively. Then we

claim that for each 8 < X there is (%s,qs), (935,rs) £ Mod such that for each

y e 2(ô),

w i%,qS)^%iS(%,rs)   ^2%   and

(%,qs)    E6* *(»„*)     ^4>,

where 1.(8) = [y\8 G Xy) which is finite by the selection of 1. Assume (*)

does not hold and that Mod(0)° = Mod(ô) and Uoà(9)X = Mod(0)c. By our

assumption we know that for each t/: S(S) —* (0,1} either
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H    ModtoJ^ n Modto) = 0   or
Ye2(S) y

D    Modtov)"W n Modto Y = 0.
yem) y

Then since U,,n e2(6) Modtoy)7,('1') = Mod and 2(0) is finite, <b would be

ECt (L). This is a contradiction.

Since £* has the Los property, Lemma 2 implies that £/ has the Los

property, so

n(2W^*<i>   and    u (»«,») l^*

Also

U(%,qS)^2U(^s,rs).

This follows from the following observation. If \b E L2 then $ = \¡/a for some

a < X. We know from (*) that we have for each 8 E Xa E U,

(3íA,77¿)^^iff(Sá,7-s)Ne^.

This yields the result.

To finish the proof we use Shelah's isomorphic ultrapowers theorem to

obtain an ultrafilter, V, such that \JV \JU (%<75) s Uy flu O8«''«).

IIII(3WNeî*   and   fl II (»«,'«) & *•
vu vu

Hence, since Uv Hv C%s,qs) = Ilt/xK (^6'^«)' etc- we have produced a

contradiction and are done.

Corollary 1. £ op, the logic on the topological models, is maximal with

respect to the Los ultraproducts theorem.

Proof. A direct application of the theorem to topological models.

Corollary 2. // £* < £j then £* does not have an isomorphic ultrapowers

theorem.

Proof. Suppose £* < £J and £* has an isomorphic ultrapowers theorem.

Since £* < ñ9 there is a <;> in £f which is not EC£.(L). As in the proof of the

theorem we have

nOM«)l=e*fc    n(%'s)^<í>   and

n(%<7á)=e-n(9w

for some (3íá,c7S), (?ßs,rs), 8 < À. Since £* has an isomorphic ultrapowers

theorem, we have a V such that HyUuC^s^s) = HyHu^S'rs) which
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leads to a contradiction as in the theorem.

Remark. £(/), £(/n"e6)), the interior operator logics (see [S-3]), do not have

an isomorphic ultrapowers theorem even though they satisfy interpolation

since £(/), £(/;eJ< £t°p.

Problem. Are there any other examples of "natural" logics which have a Los

ultraproducts theorem?

2. Separation properties. In this section we prove two weak separation

properties for an arbitrary £J.

Definition 1. £* is said to have the Souslin-Kleene property iff for each

£2 G Mod if 0, and Qc are FCe, (L)-classes then they are FC£* (L) classes.

Definition 2. £* is said to have the weak-Beth property iff for each

2 G ModLurÄ}, if fi is an ECt*(L U {R}) class such that for each (21,67) there

is a unique R so that (21,R,q) G ^t, then {(%ax,... ,an,q)\(%R,q) G fi and

(a,,... ,a„> E R} is an ECt*(L U {c,,... ,cn}) class.

Theorem. tJ has the Souslin-Kleene property.

Proof. Suppose Í2, Qc are both PC^L) classes, i.e. there is a 90 G Lq, 9x G

Lf such that

ü = {(%{ L,5(q))\(K,5(q))^90),

flc = {(23 \ L,5(r))\(%5(r))^9x).

To obtain a contradiction suppose that £2 is not ECt$(L).

For each collection 0 < / < «, ¿>, £ L2 (the 2-sorted logic), we claim that

there is an L0-model (21,67) and an L,-model (93, r) in Mod so that

(*) (%,q)^90,        (®,r)^9x,

and for each <p(, 0 < ; < n,

(21,67) ̂2<|»,. iff (93, r)NÊ2 <f>,..

Again as in the proof of the main theorem, we suppose not and derive a

contradiction.

Definition 3. If <$ ç Mod(5"), ¿D * = {(31, ¿7)1(91,f (q)) £ <5)} ç Mod.
We claim (fic)* = (Q*)c.

(21,67) £ (£2C)* iff (%5(q)) G ttciïï(%5(q)) $ Ö

iff (21,67) g ß* iff (a,?) £ (fi*)c.

By our assumption, we have that for each tj: n + 1 -» {0,1} either

H    Mod(<i.,.),,(0 n fi* = 0   or      PI    ModU)71'0 n (fi*)c = 0.
0<i<n 0<i<n

Since U„ fl o<;<nMoaX<í>¿),,(') = Mod' we know that fi* = Mod^(«//). We will
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now show that \p is an invariant sentence of L.

(31,6?) h^ iff (31, q) E ß* iff (31,9(q)) E Q

iff 3 an expansion 31* of 31 to LQ s.t. (W* ,9(q)) 1= 9Q

iff 3 an expansion 31** of 31 to L, s.t. (21**, 9(q)) ¥ 9X

iff(%9(q)) G tfiff(%9(q)) G (ßc)*

iff (31, ̂(77)) G (ß*)c iff («,?(?)) G Í2*

ifï(X,9(q))^.

But this is a contradiction since we assumed that Q was not ECñi(L).

Hence by (*) and the methods of our main theorem, we obtain (9ls,qs),

(235,7-á) for 5 < X such that

TL(%,qs)¥90,   n(%7-s)M,    and

n(3isr Mi)se2n(sar m)-

By Shelah's isomorphic ultrapowers theorem we have that there is an

ultrafilter V so that

n (9t„ r L,qs) = n n (»a r w = n n (»a r m)
l/XK K    t/ K    U

= n (»a r m),
t/XK

Il (*a.fa)M0   and    u (»a,ra)M,.
t/XK l/XK

This contradicts the fact that S2 n Qc = 0. So we are done.

Remark. We say that Ü is 2} in £* if it is the class of relativized reducts of

some £*-definable class; i.e., if there is a 0-morphism L -*" K which is the

identity except for the possibility that a(V) =£ V, and an £*-definable class Í2'

of /^-structures such that every (31, 9) G S2' is a-invertible and S2 = {(31, q)~a:

(21,77) G fi'}. If we assume that (SI,?)-" = (%~a,q'a) where 77"" = {B

n |2r"||5 G q) and that 9(q~a) = (9(q))~a, then the following stronger

result is provable.

Theorem. // Í2 and fic are 2} in t9, then 2 is EC^(L), i.e. definable.

The examples given in § 1 all satisfy the stronger requirements.

Corollary. £j has the weak-Beth property.

Proof. This is essentially the proof given in [J]. Assume fi is ECt<s(L

U {R}) such that for each (31,77) there is a unique R so that (3t, R, q) E Q. Let

S2 = Mod£î(f?(P)); then \p = 0(R) A R(cx,... ,cn) is an invariant sentence



298 JOSEPH SGRO

of   L u {R, c,.c„}. Let   fi* = Modfo) r L u {c„ . . . , c„}.   Then

fi#, (fi*)c   are   both   FCes(L U {c„ . . . , c„})-classes.   Hence   fi*  =

{(21, ax, . . . , an, 67)|(21, R, ax, . . . , a„, q) G fi   and   <a„ . . . , a„} G R}   is

ECf^L u {c„ . . .,c„}).

Problem. Does an arbitrary £ have any stronger separation properties, e.g.,

interpolation or isomorphic ultrapowers? £ op has an isomorphic ultrapowers

theorem.
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