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MAXIMAL LOGICS

JOSEPH SGRO'

ABSTRACT. In this paper we present a general method for producing logics
on various classes of models which are maximal with respect to a Lo$
ultraproducts theorem. As a corollary we show that £T°P is maximal. We also
show that these maximal logics satisfy the Souslin-Kleene property.

0. Introduction. In this paper we will prove that there is a strongest logic for
certain classes of models with a Lo$ ultraproduct theorem.

The motivation comes from two sources. The first is the area of abstract
logic and model theory. P. Lindstrom first proved that £ is the strongest
logic which satisfies the compactness and Lowenheim-Skolem theorem. K. J.
Barwise [B-1] expanded, simplified, and strengthened these results by formu-
lating abstract model theory in a category-theoretic framework.

The second area is topological model theory. In [S-1] we presented a
topological logic using generalized quantifiers. This logic is formed by adding
a quantifier symbol Qx to £, denoted by £(Q), where the interpretation of
Ox¢(x) is that the set defined by ¢(x) is “open”. Another logic, denoted by
£(Q"), e, is formed by adding Q"x,, ..., x, for each n so that the interpre-
tation of Q"x,, ..., x, (x|, ...,x,) is that the set defined by ¢(x,,...,x,) is
“open in the nth product topology”. However, they are not the strongest logics
even though they both satisfy the compactness and Lowenheim-Skolem
theorems.

More recently, S. Garavaglia and T. McKee (see [G-1] or [McK]) have found
an extension, £T%, of £(Q) and 2(Q"), e, Which has many desirable proper-
ties, e.g. compactness, Lowenheim-Skolem, interpolation, and an isomorphic
ultrapowers theorem.

Hence, one is naturally led to the question of when there is a strongest logic
with first order properties. In this paper we give a construction of the strongest
logic with a Lo$ ultraproduct theorem. We then show that these maximal
logics have the Souslin-Kleene property.

1. Abstract logics. We will assume that the reader is familiar with the basic
notions of first order model theory (e.g. many-sorted logics, ultrafilters, and
ultraproducts), topology and category theory.
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Take a first order model U, g C P(4), and form (A, q). (A, q) is called a
weak model. (If q is a topology then (¥, q) is called topological.) If we take a
class of weak models, Mod, we can give a definition of a logic on Mod.

Our notion of a logic is similar to that of Barwise [B-1] and we will assume
some familiarity with it. We take the set of objects to be £, the class of
languages. The morphisms will be the k-morphisms in [B-1].

We define a logic, £*, to consist of a syntax and a semantics. The syntax is
a functor * on £ The elements £* for L € £ are called £* sentences. The
functor * satisfies the following axiom:

OcCURRENCE AxioM. For every £* sentence ¢ there is a smallest (under C)
language L, in € such that ¢ € Lj.

The semantlcs of £* is a relation E°* such that if A, q) & ¢, then U is an
L-structure for some L in £and ¢ € L*. It satisfies the following axiom:

IsoMorPHISM AxIoM. If (¥, ¢) E=° ¢ and (U, q) = (B, 1) (ie. (¥, ), (B, ) are
isomorphic as 2-sorted structures), then (B, r) E o,

A logic on Mod which has important applications is the 2-sorted logic,
eMod (We will write £, for £ when the meaning is understood.) For
L € @, I* is the set of 2- sorted sentences (i.e. built up from the constants,
predicates, functions, individual variables, set variables, equality and € using
V, =, 3x, 3X). Note that € has its standard meaning and is a logical
symbol. If (%,q) € Mod then

(U,q) 2 ¢

will be the usual satisfaction relation.
We say that ¢ in £* is ECy« (L) if and only if thereis a y € L¥* such that

Mod; () = Mod] (¥)

where

Mod,[i (¢) = (A, 9)|(¥,q) E° ,(X,q) an L-structure}.

Suppose we have two logics, £*, £* on a class of models, Mod. Then we
can define an ordering between them which is a measure of their strength of
expressibility. We say that £* is as strong as £*, 2% > £* if for every £*-
sentence ¢ there is an £%-sentence  such that

(1) Every symbol occurrlng in § occurs in ¢, ie. L, € L.

(if) Mod™" (¢) = Mod"" (¥).

Again taking an arbitrary class of models, Mod, let T = {¢|(%,q) € Mod
for some %A} and suppose we are given an %: T — T, a map, so that
%(q) = 9(9(q)) and for each g, if (4,q) € Mod then (¥, F(gq)) € Mod . We
can define two logics based on this . Let ¢ be an £,-sentence; then ¢ is
called % -invariant if and only if for all (%,q) € Mod,

(U, q) = ¢ if and only if (A, F(g)) F> ¢
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We define £ to be the sublogic of £, (on Mod) which consists of the %
invariant sentences. Taking Mod(%) = {(%,%(¢))|(%,q) € Mod}, we can
define a logic, £%, on Mod(%) as follows:

(a) the L%-sentences are just the F-invariant ones,

(b) (U, %(q)) £ ¢ if and only if (¥, q) %2 ¢.

If we are given a logic £* on Mod(% ) where F is as above then we can define
an 82 on Mod. [32 will have the same sentences as £* but the satisfaction
relation will be defined as follows: if (A,q) € Mod then

@, ¢) £ ¢ if and only if (¥, F(q)) £ ¢
This is the analogue of £ for £*. We can then prove the following:
LEMMA 1. If £F < €, then £* < £5.

PROOF. Assume £ < €, and suppose that ¢ € L*. Since ¢ is EC;, (L) we
have y € L? such that Mod® (¢) = Mod®™ (y) but then y is F-invariant so
Mod® ($) = Mod® (§).

Suppose we are given a class of models, Mod, such that if (QIy,qy) € Mod,
y <A and U is an ultrafilter on A, then we have that II, (% .q,)

= (Il %Iy, IIy 9,) is in Mod (i.e. Mod is closed under ultraproducts, where
IIy ¥, is the usual ultraproduct on the %A,y <A,and [[; ¢, = {ITy [o, I
0, € q,), where [[,[0,]= {[f]UI{ylf(y) € 0,} € U}). Furthermore 1f

(HU q,,) = 9(I1y (qy)) then we can give a notlon of ultraproduct for £*
on Mod(%) as follows:

fjjl@[y,qy) = (];JI 2[7,"5(1;11 qy)) € Mod(%).

This naturally leads to the question of whether there is an analogue to the
Lo$ ultraproduct theorem for £* (i.e. HU *,.q,) £ ¢ if and only if
(¥, %(q,)) £ ¢} € U for all ¢ in £¥). The following lemma clarifies the
situation.

LEMMA 2. B’z' has a L.os theorem (on Mod) if and only if €* has a Los theorem
(on Mod(%)).

PROOF. (IF) Assume E* is such that for all ¢ in £*, HU *,,q,) £ ¢ if and
only if {y|(¥,,%(q,)) t5* ¢} € U. By the definition of £5,

I;II(QI,JIY) = (1;/[ AxA, IL_/I qy) EST ¢ iff (IL_/I 9[7,@'(1;}[ qy)) A
iff (I,} 4,7 (T,,I @(qy))) FE o iff (vI(1, % (g,)) k=" ¢} € U

iff (Y](21,.4,) £ ¢} € U.

(oNLY 1F) The proof is similar to the if direction.
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ExampLES. (a) The most interesting example is topology. Let Mod,
= {(A,q)|q is a base for a topology on A} and Top(q) be the topology
generated by ¢. Then

Top(Top(g)) = Top(q), TOP(IU[%) = TOp(lgTop(q,))

and £T°P has a ko$ theorem.

(b) Let Modg; = {(¥,9)lq is a base for a filter on A}; then Fil(g) = the
filter on A generated by g¢. Hence Fil(g) = Fil(Fil(g)), Fil(IIy ¢,)
= Fil(IIy Fil(¢,)) and pFil satisfies a Lo§ theorem.

(c) Let ModBA = {(¥,q)lg € 9(4)}. Then BA(q) (CBA(g)) is the (com-
plete) Boolean algebra generated by ¢ and BA(I], %)
= BA(TIy BA(q,)) (CBA(TI, 4,) = CBA(II, CBA(g,))). £®* and pCPA
have Lo$ theorems.

If £* has a Lo$ theorem, we say that £* has the £os property.

The last result we need is a two-sorted version of Shelah’s isomorphic
ultrapowers theorem.

THEOREM. If (Y, q) =, (B, r), then there is an ultrafilter U on a cardinal k
such that T[;, (¥, q) = I1, (B, 7).

Proor. This two-sorted version is analogous to the proof found in [C-N].
Now we can prove

THEOREM. Ler £* be a logic on Mod(F). If ©* has the Los property, then
e* < e

(One should note that we have not placed any restrictions on the size of L.)

PRrOOF. Assume £* has the Lo§ property. Assume furthermore that £* £ p?¥
and we will proceed to produce a contradiction.

We know that £5 € £, by Lemma 1 and the assumption. Let ¢ € L* be a
sentence such that ¢ is not ECEZ(L). Since L is a set we have that |L| < A, A
some infinite cardinal.

Take U to be a A-regular ultrafilter on A which exists. By the definition of
regular, we know that there is a set X C U of power A such that each y € A
belongs to only finitely many X € X.

Let {4, }, e and {X;s};, be enumerations of I? and %, respectively. Then we
claim that for each § < A there is (Y, g5), (Bs,75) € Mod such that for each
Y € 2(3),

(%) (g, q5) E52 o iff (By,55) E*2y, and

®5.95) ¢, (Bs5) ¥ g,
where 2(8) = {y§ € X} whlch is finite by the selecuon of X. Assume (*)
does not hold and that Mod(0) Mod(#) and Mod(0) = Mod()°. By our
assumption we know that for each n: =(§) — {0, 1} either
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Mod(,)"™ N Mod(s) =
Dy Modt )™ 0 Mode) = & or

Mod(y, )™ S
0, Modt, )™ 1 Mod(s)" = &

Then since U, N, 55 Mod(\py)"(ﬂ = Mod and Z(8) is finite, ¢ would be
ECq,(L). This is a contradiction.

Since £* has the Los property, Lemma 2 implies that £* has the Los
property, so

[UI (¥5,q5) F ¢ and 1} (B, 1) ¥ 6.
Also
I(_jI (9[5,45) =¢, I;/I (%5,'3)'

This follows from the following observation. If ¢ € L? then ¥ = y, for some
a < A. We know from (*) that we have for each § € X, € U,
(9[5»43) ':EZ ‘I/ lﬁ (%8,’3) I:ez 4/

This yields the result.
To finish the proof we use Shelah’s isomorphic ultrapowers theorem to
obtain an ultrafilter, ¥, such that [T, TI,, (%5, ¢5) = II, I, (B;. %)

* *
I %,95) 2 ¢ and T IT (B.5) ¥ ¢.
VU VU
Hence, since [I, [T, U5, 495) = Ilyxy (¥s.95), etc., we have produced a
contradiction and are done.

COROLLARY 1. TP the logic on the topological models, is maximal with
respect to the Los ultraproducts theorem.

PRrOOF. A direct application of the theorem to topological models.

COROLLARY 2. If £* < 2% then £* does not have an isomorphic ultrapowers
theorem.

PrOOF. Suppose £* < % and £* has an isomorphic ultrapowers theorem.
Since £* < L7 there is a ¢ in £7 which is not EC.(L). As in the proof of the
theorem we have

17 (%5.45) 2 g, 1T (®5,%) ¥ ¢ and

I;JI (%5,%) o I;,I (%s,'ls)

for some (¥s,q5), (Bs,7), 6 < A. Since £* has an isomorphic ultrapowers
theorem, we have a V such that [I, I1, (%s.95) = II, IIy (Bs,7%) which



296 JOSEPH SGRO

leads to a contradiction as in the theorem.

REMARK. £(1), £(1,<,,), the interior operator logics (see [S-3]), do not have
an isomorphic ultrapowers theorem even though they satisfy interpolation
since £(1), £(I" ) < £T°P.

Problem. Are there any other examples of “natural” logics which have a Lo$
ultraproducts theorem?

2. Separation properties. In this section we prove two weak separation
properties for an arbitrary e,

DEerINITION 1. £% is said to have the Souslin-Kleene property iff for each
Q C Mod if @ and Q° are PCp+(L)-classes then they are ECpe(L) classes.

DEFINITION 2. £* is said to have the weak-Beth property iff for each
© C Mod, z), if 2is an ECgs(L U {R}) class such that for each (¥, g) there
is a unique R so that (A, R,q) € Q, then {(¥,q,,...,a,,9)|(%,R,q) € @ and
{aj,...,a,» € R}isan ECoe(L U {c,,...,c,}) class.

TueoReM. L% has the Souslin-Kleene property.

PROOF. Suppose £, ° are both PCes(L) classes, i.e. there is a 8, € Lg, 0, €
L7 such th
7 such that

Q = (U I L,F(9)I% F(q)) £ 8,),
Q% = (B I L,F()|(B,5()) £ 6,).

To obtain a contradiction suppose that @ is not ECps(L).
For each collection 0 < i < n, ¢; € L’ (the 2-sorted logic), we claim that
there is an Lymodel (%, ¢) and an L;-model (B, r) in Mod so that

(*) (%,q) K2 0,, (B,r) 29,

and for each ¢, 0 < i < n,

(A, q) £52 ¢, iff (B,7) £ ¢,

Again as in the proof of the main theorem, we suppose not and derive a
contradiction.
DEeFINITION 3. If &) C Mod(%), D* = {(X, 9)|(X,F(¢)) € D} C Mod.
We claim (2°)* = (@%)°.
(¥.9) € (@) iff (A,9(¢) € O iff (U, F(q)) & O
iff (U, q) & Q iff (¥U,q) € (Q%)°.

By our assumption, we have that for each n: n + 1 — {0, 1} either

(i) * _ (i) *\C
0<r?<” Mod(¢,)™' N Q g or 0\(9@ Mod(¢;)™" N Q%) = @.

Since U, N 0<i<nM0d(¢)"@ = Mod, we know that Q* = Mod%(y). We will
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now show that ¢ is an invariant sentence of L.
A, q) E Yiff (A, q) € Q* iff (A,F(q)) € @
iff 3 an expansion A* of U to L, s.t. (A*,F(q)) k 6,
iff 3 an expansion A** of U to L, s.t. (A**,F(q)) ¥ 6,
iff (U, F(q)) & 97 iff (A, 5(9)) & @)
iff (,%(q)) & Q%) iff (A,%(q)) € *
iff (A,%(q)) k ¢.

But this is a contradiction since we assumed that £ was not ECps(L).
Hence by (*) and the methods of our main theorem, we obtain (%, g;),
(B, ;) for 8 < A such that

II-JI (uqus) F 00, Il_jI (588”5) E 0] and
1 (s | L) =, T (B 1 L),

By Shelah’s isomorphic ultrapowers theorem we have that there is an
ultrafilter ¥ so that

UI;(IV(QIG r L,%) = I;/.[ IJ (QI& r L»q&) = I;/.[ ]J (%8 r L,%)

Bs [ L,r5),
xV(sr 'Is)

As,q5) F 6 d B, 5) E 0.
UI;IV(‘S%) o A% UI;IV(S%) :

<

This contradicts the fact that @ N Q° = &. So we are done.

REMARK. We say that © is 3! in £* if it is the class of relativized reducts of
some L£*-definable class; i.e., if there is a 0-morphism L —% K which is the
identity except for the possibility that a(V) # V, and an £ *-definable class Q’
of K-structures such that every (2, g) € @' is a-invertible and @ = {(¥, g)~*:
(A,q) € ). If we assume that (A,q) " = (A%, ¢™*) where ¢ * = {B
N |A™*||B € ¢} and that F(¢g~*) = (F(q))”*, then the following stronger
result is provable.

THEOREM. If Q and QF are E} in £%, then Q is ECgs(L), i.e. definable.
The examples given in §1 all satisfy the stronger requirements.
COROLLARY. £ has the weak-Beth property.

Proor. This is essentially the proof given in [J]. Assume @ is EC,ps(L
U {R}) such that for each (¥, ¢) there is a unique R so that (%, R,q) € Q. Let
Q = Modgs (B(R)); then y = 8(R) A R(c,,...,c,) is an invariant sentence
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of LU({R, cp...,¢c) Let ¥ =Mod(y)! LU {c,...,c,). Then
Q*, (%) are both PCe(L U {c,, ..., c,})-classes. Hence Q% =
(M, ay,...,a0, PN, R, a,...,a,9 €Q and {a,,...,a,) €ER} is
ECeL U {c}y ..., ¢p))

Problem. Does an arbitrary ¥ have any stronger separation properties, e.g.,
interpolation or isomorphic ultrapowers? £ToP has an isomorphic ultrapowers
theorem.
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