MAXIMAL LOGICS

JOSEPH SGRO¹

ABSTRACT. In this paper we present a general method for producing logics on various classes of models which are maximal with respect to a Łoś ultraproducts theorem. As a corollary we show that $\mathfrak{L}^{\mathsf{Top}}$ is maximal. We also show that these maximal logics satisfy the Souslin-Kleene property.

0. Introduction. In this paper we will prove that there is a strongest logic for certain classes of models with a Łoś ultraproduct theorem.

The motivation comes from two sources. The first is the area of abstract logic and model theory. P. Lindström first proved that $\mathcal{L}_{\omega\omega}$ is the strongest logic which satisfies the compactness and Löwenheim-Skolem theorem. K. J. Barwise [B-1] expanded, simplified, and strengthened these results by formulating abstract model theory in a category-theoretic framework.

The second area is topological model theory. In [S-1] we presented a topological logic using generalized quantifiers. This logic is formed by adding a quantifier symbol Qx to $\mathcal{E}_{\omega\omega}$, denoted by $\mathcal{E}(Q)$, where the interpretation of $Qx\phi(x)$ is that the set defined by $\phi(x)$ is "open". Another logic, denoted by $\mathcal{E}(Q^n)_{n\in\omega}$, is formed by adding Q^nx_1,\ldots,x_n for each n so that the interpretation of $Q^nx_1,\ldots,x_n\phi(x_1,\ldots,x_n)$ is that the set defined by $\phi(x_1,\ldots,x_n)$ is "open in the nth product topology". However, they are not the strongest logics even though they both satisfy the compactness and Löwenheim-Skolem theorems.

More recently, S. Garavaglia and T. McKee (see [G-1] or [McK]) have found an extension, \mathcal{E}^{Top} , of $\mathcal{E}(Q)$ and $\mathcal{E}(Q^n)_{n\in\omega}$ which has many desirable properties, e.g. compactness, Löwenheim-Skolem, interpolation, and an isomorphic ultrapowers theorem.

Hence, one is naturally led to the question of when there is a strongest logic with first order properties. In this paper we give a construction of the strongest logic with a Łoś ultraproduct theorem. We then show that these maximal logics have the Souslin-Kleene property.

1. Abstract logics. We will assume that the reader is familiar with the basic notions of first order model theory (e.g. many-sorted logics, ultrafilters, and ultraproducts), topology and category theory.

Received by the editors December 10, 1975 and, in revised form, July 15, 1976.

AMS (MOS) subject classifications (1970). Primary 02H99; Secondary 02C99, 02G99, 18B99.

¹ This research was supported by NSF grant MPS-74-08550.

[©] American Mathematical Society 1977

Take a first order model $\mathfrak{A}, q \subseteq \mathfrak{P}(A)$, and form (\mathfrak{A}, q) . (\mathfrak{A}, q) is called a weak model. (If q is a topology then (\mathfrak{A},q) is called topological.) If we take a class of weak models, Mod, we can give a definition of a logic on Mod.

Our notion of a logic is similar to that of Barwise [B-1] and we will assume some familiarity with it. We take the set of objects to be \mathcal{L} , the class of languages. The morphisms will be the k-morphisms in [B-1].

We define a logic, \mathcal{L}^* , to consist of a syntax and a semantics. The syntax is a functor * on \mathbb{L} . The elements \mathbb{L}^* for $L \in \mathbb{L}$ are called \mathbb{L}^* sentences. The functor * satisfies the following axiom:

OCCURRENCE AXIOM. For every \mathcal{L}^* sentence ϕ there is a smallest (under \subseteq) language L_{ϕ} in \mathcal{L} such that $\phi \in L_{\phi}^*$. The semantics of \mathcal{L}^* is a relation $\models^{\mathcal{L}^*}$ such that if $(\mathfrak{A}, q) \models^{\mathcal{L}^*} \phi$, then \mathfrak{A} is an

L-structure for some L in \mathcal{L} and $\phi \in L^*$. It satisfies the following axiom:

ISOMORPHISM AXIOM. If $(\mathfrak{A},q) \models^{\mathfrak{L}^*} \phi$ and $(\mathfrak{A},q) \cong (\mathfrak{B},r)$ (i.e. $(\mathfrak{A},q), (\mathfrak{B},r)$ are isomorphic as 2-sorted structures), then $(\mathfrak{B}, r) \models^{\mathfrak{L}^*} \phi$.

A logic on Mod which has important applications is the 2-sorted logic, $\mathcal{L}_2^{\text{Mod}}$. (We will write \mathcal{L}_2 for $\mathcal{L}_2^{\text{Mod}}$ when the meaning is understood.) For $L \in \mathcal{C}$, L^2 is the set of 2-sorted sentences (i.e. built up from the constants, predicates, functions, individual variables, set variables, equality and ∈ using \vee , \neg , $\exists x$, $\exists X$). Note that \in has its standard meaning and is a logical symbol. If $(\mathfrak{A},q) \in Mod$ then

$$(\mathfrak{A},q) \models^{\mathfrak{L}_2} \phi$$

will be the usual satisfaction relation.

We say that ϕ in \mathcal{L}^* is $EC_{\mathcal{L}^\#}(L)$ if and only if there is a $\psi \in L^\#$ such that

$$\operatorname{Mod}_{L}^{\mathfrak{L}^{*}}(\phi) = \operatorname{Mod}_{L}^{\mathfrak{L}^{\#}}(\psi)$$

where

$$\operatorname{Mod}_L^{\mathcal{E}}(\phi) = \{(\mathfrak{A},q) | (\mathfrak{A},q) \models^{\mathcal{E}} \phi, (\mathfrak{A},q) \text{ an } L\text{-structure}\}.$$

Suppose we have two logics, \mathcal{L}^* , $\mathcal{L}^\#$, on a class of models, Mod. Then we can define an ordering between them which is a measure of their strength of expressibility. We say that $\mathcal{L}^{\#}$ is as strong as \mathcal{L}^{*} , $\mathcal{L}^{\#} \geqslant \mathcal{L}^{*}$, if for every \mathcal{L}^{*} sentence ϕ there is an $\mathcal{L}^{\#}$ -sentence ψ such that

- (i) Every symbol occurring in ψ occurs in ϕ , i.e. $L_{\psi} \subseteq L_{\phi}$.
- (ii) $\operatorname{Mod}^{\mathfrak{L}^*}(\phi) = \operatorname{Mod}^{\mathfrak{L}^\#}(\psi)$.

Again taking an arbitrary class of models, Mod, let $T = \{q | (\mathfrak{A}, q) \in Mod \}$ for some \mathfrak{A} and suppose we are given an $\mathfrak{F}: T \to T$, a map, so that $\mathfrak{F}(q)=\mathfrak{F}(\mathfrak{F}(q))$ and for each q, if $(\mathfrak{A},q)\in \mathrm{Mod}$ then $(\mathfrak{A},\mathfrak{F}(q))\in \mathrm{Mod}$. We can define two logics based on this \mathcal{F} . Let ϕ be an \mathcal{C}_2 -sentence; then ϕ is called \mathcal{F} -invariant if and only if for all $(\mathfrak{A},q) \in Mod$,

$$(\mathfrak{A},q) \models^{\mathfrak{L}_2} \phi$$
 if and only if $(\mathfrak{A},\mathfrak{F}(q)) \models^{\mathfrak{L}_2} \phi$.

We define $\mathcal{L}_2^{\mathfrak{F}}$ to be the sublogic of \mathcal{L}_2 (on Mod) which consists of the \mathfrak{F} invariant sentences. Taking $Mod(\mathfrak{F}) = \{(\mathfrak{A}, \mathfrak{F}(q)) | (\mathfrak{A}, q) \in Mod\}$, we can define a logic, $\mathfrak{L}^{\mathfrak{F}}$, on $Mod(\mathfrak{F})$ as follows:

- (a) the $L^{\mathfrak{F}}$ -sentences are just the \mathfrak{F} -invariant ones, (b) $(\mathfrak{A}, \mathfrak{F}(q)) \models^{\mathfrak{L}^{\mathfrak{F}}} \phi$ if and only if $(\mathfrak{A}, q) \models^{\mathfrak{L}_2} \phi$.

If we are given a logic \mathfrak{L}^* on $Mod(\mathfrak{F})$ where \mathfrak{F} is as above then we can define an \mathcal{L}_2^* on Mod. \mathcal{L}_2^* will have the same sentences as \mathcal{L}^* but the satisfaction relation will be defined as follows: if $(\mathfrak{A},q)\in \mathsf{Mod}$ then

$$(\mathfrak{A},q) \models^{\mathfrak{L}_{2}^{*}} \phi$$
 if and only if $(\mathfrak{A},\mathfrak{F}(q)) \models^{\mathfrak{L}^{*}} \phi$.

This is the analogue of $\models^{\mathfrak{L}^{\mathfrak{G}}}$ for \mathfrak{L}^{*} . We can then prove the following:

LEMMA 1. If
$$\mathfrak{L}_2^* \leqslant \mathfrak{L}_2$$
 then $\mathfrak{L}^* \leqslant \mathfrak{L}_3^{\mathfrak{F}}$.

PROOF. Assume $\mathcal{L}_2^* \leq \mathcal{L}_2$ and suppose that $\phi \in L^*$. Since ϕ is $EC_{\mathcal{L}_2}(L)$ we have $\psi \in L^2$ such that $\operatorname{Mod}^{\mathcal{L}_2^*}(\phi) = \operatorname{Mod}^{\mathcal{L}_2}(\psi)$ but then ψ is \mathscr{F} -invariant so $\operatorname{Mod}^{\mathfrak{L}^{\bullet}}(\phi) = \operatorname{Mod}^{\mathfrak{L}^{\mathfrak{F}}}(\psi).$

Suppose we are given a class of models, Mod, such that if $(\mathfrak{U}_{\gamma}, q_{\gamma}) \in Mod$, $\gamma < \lambda$ and U is an ultrafilter on λ , then we have that $\dot{\Pi}_U(\mathfrak{A}_{\gamma}, q_{\gamma})$ $=(\prod_{U}\mathfrak{A}_{\gamma},\prod_{U}q_{\gamma})$ is in Mod (i.e. Mod is closed under ultraproducts, where $\prod_U \mathfrak{A}_{\gamma}$ is the usual ultraproduct on the \mathfrak{A}_{γ} , $\gamma < \lambda$, and $\prod_U q_{\gamma} = \{\prod_U [\mathfrak{O}_{\gamma}]\}$ $\mathbb{O}_{\gamma} \in q_{\gamma}$, where $\prod_{U} [\mathbb{O}_{\gamma}] = \{ [f]_{U} | \{ \gamma | f(\gamma) \in \mathbb{O}_{\gamma} \} \in U \}$. Furthermore if $\mathfrak{F}(\prod_U q_{\gamma}) = \mathfrak{F}(\prod_U \mathfrak{F}(q_{\gamma})),$ then we can give a notion of ultraproduct for \mathfrak{L}^* on Mod(F) as follows:

$$\prod_{II}^{\mathfrak{F}} (\mathfrak{A}_{\gamma}, q_{\gamma}) = \left(\prod_{II} \mathfrak{A}_{\gamma}, \mathfrak{F} \bigg(\prod_{II} q_{\gamma}\bigg)\right) \in \mathsf{Mod}(\mathfrak{F}).$$

This naturally leads to the question of whether there is an analogue to the Los ultraproduct theorem for \mathbb{C}^* (i.e. $\prod_U^{\mathfrak{F}}(\mathfrak{A}_{\gamma},q_{\gamma}) \models^{\mathfrak{C}^*} \phi$ if and only if $\{\gamma | (\mathfrak{A}_{\gamma},\mathfrak{F}(q_{\gamma})) \models^{\mathfrak{C}^*} \phi\} \in U$ for all ϕ in \mathbb{C}^*). The following lemma clarifies the situation.

Lemma 2. \mathcal{L}_2^* has a Łoś theorem (on Mod) if and only if \mathcal{L}^* has a Łoś theorem (on Mod(F)).

PROOF. (IF) Assume \mathcal{L}^* is such that for all ϕ in \mathcal{L}^* , $\prod_U^{\mathfrak{F}}(\mathfrak{A}_{\gamma},q_{\gamma}) \models^{\mathcal{L}^*} \phi$ if and only if $\{\gamma|(\mathfrak{A}_{\gamma},\mathfrak{F}(q_{\gamma}))\models^{\mathcal{L}^*} \phi\} \in U$. By the definition of \mathcal{L}_{2}^* ,

$$\begin{split} \prod_{U} (\mathfrak{A}_{\gamma}, q_{\gamma}) &= \left(\prod_{U} \mathfrak{A}_{\gamma}, \prod_{U} q_{\gamma} \right) \models^{\mathcal{E}_{2}^{*}} \phi \text{ iff } \left(\prod_{U} \mathfrak{A}_{\gamma}, \mathfrak{F} \left(\prod_{U} q_{\gamma} \right) \right) \models^{\mathcal{E}^{*}} \phi \\ & \text{iff } \left(\prod_{U} \mathfrak{A}_{\gamma}, \mathfrak{F} \left(\prod_{U} \mathfrak{F} (q_{\gamma}) \right) \right) \models^{\mathcal{E}^{*}} \phi \text{ iff } \{ \gamma | (\mathfrak{A}_{\gamma} \mathfrak{F} (q_{\gamma})) \models^{\mathcal{E}^{*}} \phi \} \in U \\ & \text{iff } \{ \gamma | (\mathfrak{A}_{\gamma}, q_{\gamma}) \models^{\mathcal{E}_{2}^{*}} \phi \} \in U. \end{split}$$

(ONLY IF) The proof is similar to the if direction.

EXAMPLES. (a) The most interesting example is topology. Let $\operatorname{Mod}_b = \{(\mathfrak{A},q)|q \text{ is a base for a topology on } A\}$ and $\operatorname{Top}(q)$ be the topology generated by q. Then

$$\operatorname{Top}(\operatorname{Top}(q)) = \operatorname{Top}(q), \quad \operatorname{Top}\left(\prod_{U} q_{\gamma}\right) = \operatorname{Top}\left(\prod_{U} \operatorname{Top}(q_{\gamma})\right)$$

and L^{Top} has a Los theorem.

- (b) Let $\operatorname{Mod}_{\operatorname{Fil}} = \{(\mathfrak{A},q)|q \text{ is a base for a filter on } A\}$; then $\operatorname{Fil}(q) = \operatorname{the filter}$ on A generated by q. Hence $\operatorname{Fil}(q) = \operatorname{Fil}(\operatorname{Fil}(q))$, $\operatorname{Fil}(\prod_U q_\gamma) = \operatorname{Fil}(\prod_U \operatorname{Fil}(q_\gamma))$ and $\operatorname{\mathcal{E}}^{\operatorname{Fil}}$ satisfies a Łoś theorem.
- (c) Let $\operatorname{Mod}_{BA} = \{(\mathfrak{A},q)|q \subseteq \mathfrak{P}(A)\}$. Then $\operatorname{BA}(q)$ (CBA(q)) is the (complete) Boolean algebra generated by q and $\operatorname{BA}(\prod_U q_\gamma) = \operatorname{BA}(\prod_U \operatorname{BA}(q_\gamma))$ (CBA($\prod_U q_\gamma$) = CBA($\prod_U \operatorname{CBA}(q_\gamma)$)). $\mathfrak{L}^{\operatorname{BA}}$ and $\mathfrak{L}^{\operatorname{CBA}}$ have Loś theorems.

If \mathcal{L}^* has a Łoś theorem, we say that \mathcal{L}^* has the Łoś property.

The last result we need is a two-sorted version of Shelah's isomorphic ultrapowers theorem.

THEOREM. If $(\mathfrak{A},q) \equiv_{\mathfrak{L}_2} (\mathfrak{B},r)$, then there is an ultrafilter U on a cardinal κ such that $\prod_U (\mathfrak{A},q) \cong \prod_U (\mathfrak{B},r)$.

PROOF. This two-sorted version is analogous to the proof found in [C-N]. Now we can prove

THEOREM. Let \mathbb{C}^* be a logic on $Mod(\mathfrak{F})$. If \mathbb{C}^* has the Łoś property, then $\mathbb{C}^* \leq \mathbb{C}^{\mathfrak{F}}$.

(One should note that we have not placed any restrictions on the size of L.) PROOF. Assume \mathcal{L}^* has the Łoś property. Assume furthermore that $\mathcal{L}^* \leqslant \mathcal{L}^{\mathfrak{T}}$ and we will proceed to produce a contradiction.

We know that $\mathcal{L}_2^* \leqslant \mathcal{L}_2$ by Lemma 1 and the assumption. Let $\phi \in L^*$ be a sentence such that ϕ is not $EC_{\mathcal{L}_2}(L)$. Since L is a set we have that $|L| \leqslant \lambda$, λ some infinite cardinal.

Take U to be a λ -regular ultrafilter on λ which exists. By the definition of regular, we know that there is a set $\mathfrak{X} \subseteq U$ of power λ such that each $\gamma \in \lambda$ belongs to only finitely many $X \in \mathfrak{X}$.

Let $\{\psi_{\gamma}\}_{\gamma \in \lambda}$ and $\{X_{\delta}\}_{\delta < \lambda}$ be enumerations of L^2 and \mathfrak{X} , respectively. Then we claim that for each $\delta < \lambda$ there is $(\mathfrak{A}_{\delta}, q_{\delta})$, $(\mathfrak{B}_{\delta}, r_{\delta}) \in \text{Mod such that for each } \gamma \in \Sigma(\delta)$,

$$\begin{array}{ccc} (\mathfrak{A}_{\delta},q_{\delta}) \models^{\mathfrak{L}_{2}} \psi_{\gamma} \text{ iff } (\mathfrak{B}_{\delta},r_{\delta}) & \models^{\mathfrak{L}_{2}} \psi_{\gamma} & \text{and} \\ \\ (\mathfrak{A}_{\delta},q_{\delta}) & \models^{\mathfrak{L}_{2}^{*}} \phi, (\mathfrak{B}_{\delta},r_{\delta}) & \sharp^{\mathfrak{L}_{2}^{*}} \phi, \end{array}$$

where $\Sigma(\delta) = \{\gamma | \delta \in X_{\gamma}\}$ which is finite by the selection of \mathfrak{X} . Assume (*) does not hold and that $\operatorname{Mod}(\theta)^0 = \operatorname{Mod}(\theta)$ and $\operatorname{Mod}(\theta)^1 = \operatorname{Mod}(\theta)^c$. By our assumption we know that for each $\eta \colon \Sigma(\delta) \to \{0,1\}$ either

$$\mathop{\cap}_{\gamma\in\Sigma(\delta)}\operatorname{Mod}(\psi_{\gamma})^{\eta(\gamma)}\,\cap\,\operatorname{Mod}(\phi)=\varnothing\quad\text{or}\quad$$

$$\bigcap_{\gamma \in \Sigma(\delta)} \operatorname{Mod}(\psi_{\gamma})^{\eta(\gamma)} \cap \operatorname{Mod}(\phi)^{c} = \emptyset.$$

Then since $\bigcup_{\eta} \bigcap_{\gamma \in \Sigma(\delta)} \operatorname{Mod}(\psi_{\gamma})^{\eta(\gamma)} = \operatorname{Mod}$ and $\Sigma(\delta)$ is finite, ϕ would be $EC_{\ell_2}(L)$. This is a contradiction.

Since \mathcal{L}^* has the Łoś property, Lemma 2 implies that \mathcal{L}_2^* has the Łoś property, so

$$\prod_{U} (\mathfrak{A}_{\delta}, q_{\delta}) \models^{\mathfrak{L}_{2}^{*}} \phi \quad \text{and} \quad \prod_{U} (\mathfrak{B}_{\delta}, r_{\delta}) \not\models^{\mathfrak{L}_{2}^{*}} \phi.$$

Also

$$\prod_{U} (\mathfrak{A}_{\delta}, q_{\delta}) \equiv_{\mathfrak{L}_{2}} \prod_{U} (\mathfrak{B}_{\delta}, r_{\delta}).$$

This follows from the following observation. If $\psi \in L^2$ then $\psi = \psi_{\alpha}$ for some $\alpha < \lambda$. We know from (*) that we have for each $\delta \in X_{\alpha} \in U$,

$$(\mathfrak{A}_{\delta}, q_{\delta}) \models^{\mathfrak{L}_2} \psi \text{ iff } (\mathfrak{B}_{\delta}, r_{\delta}) \models^{\mathfrak{L}_2} \psi.$$

This yields the result.

To finish the proof we use Shelah's isomorphic ultrapowers theorem to obtain an ultrafilter, V, such that $\prod_{V} \prod_{U} (\mathfrak{A}_{\delta}, q_{\delta}) \cong \prod_{V} \prod_{U} (\mathfrak{B}_{\delta}, r_{\delta})$,

$$\prod_{V} \prod_{U} (\mathfrak{U}_{\delta}, q_{\delta}) \models^{\ell_{2}^{*}} \phi \quad \text{and} \quad \prod_{V} \prod_{U} (\mathfrak{B}_{\delta}, r_{\delta}) \not\models^{\ell_{2}^{*}} \phi.$$

Hence, since $\prod_{V}\prod_{U}(\mathfrak{A}_{\delta},q_{\delta})=\prod_{U\times V}(\mathfrak{A}_{\delta},q_{\delta})$, etc., we have produced a contradiction and are done.

COROLLARY 1. \mathcal{L}^{Top} , the logic on the topological models, is maximal with respect to the Łoś ultraproducts theorem.

PROOF. A direct application of the theorem to topological models.

COROLLARY 2. If $\mathfrak{L}^* < \mathfrak{L}^{\mathfrak{F}}$ then \mathfrak{L}^* does not have an isomorphic ultrapowers theorem.

PROOF. Suppose $\mathbb{C}^* < \mathbb{C}^{\mathfrak{F}}$ and \mathbb{C}^* has an isomorphic ultrapowers theorem. Since $\mathbb{C}^* < \mathbb{C}^{\mathfrak{F}}$ there is a ϕ in $\mathbb{C}^{\mathfrak{F}}$ which is not $EC_{\mathbb{C}^*}(L)$. As in the proof of the theorem we have

$$\begin{split} &\prod_{U} \left(\mathfrak{A}_{\delta}, q_{\delta} \right) \models^{\mathfrak{L}^{\mathfrak{F}}} \phi, \quad \prod_{U} \left(\mathfrak{B}_{\delta}, r_{\delta} \right) \not\models^{\mathfrak{L}^{\mathfrak{F}}} \phi \quad \text{and} \\ &\prod_{U} \left(\mathfrak{A}_{\delta}, q_{\delta} \right) \equiv_{\mathbb{C}^{*}} \prod_{U} \left(\mathfrak{B}_{\delta}, r_{\delta} \right) \end{split}$$

for some $(\mathfrak{A}_{\delta}, q_{\delta})$, $(\mathfrak{B}_{\delta}, r_{\delta})$, $\delta < \lambda$. Since \mathfrak{L}^* has an isomorphic ultrapowers theorem, we have a V such that $\prod_{V} \prod_{U} (\mathfrak{A}_{\delta}, q_{\delta}) \cong \prod_{V} \prod_{U} (\mathfrak{B}_{\delta}, r_{\delta})$ which

leads to a contradiction as in the theorem.

REMARK. $\mathcal{L}(I)$, $\mathcal{L}(I_{n\in\omega}^n)$, the interior operator logics (see [S-3]), do not have an isomorphic ultrapowers theorem even though they satisfy interpolation since $\mathcal{L}(I)$, $\mathcal{L}(I_{n\in\omega}^n) < \mathcal{L}^{\text{Top}}$.

Problem. Are there any other examples of "natural" logics which have a Łoś ultraproducts theorem?

2. Separation properties. In this section we prove two weak separation properties for an arbitrary $\mathfrak{L}^{\mathfrak{F}}$.

DEFINITION 1. \mathcal{L}^* is said to have the *Souslin-Kleene property* iff for each $\Omega \subseteq \operatorname{Mod} \ \Omega$ and Ω^c are $PC_{\mathcal{C}^*}(L)$ -classes then they are $EC_{\mathcal{C}^*}(L)$ classes.

DEFINITION 2. \mathcal{L}^* is said to have the weak-Beth property iff for each $\Omega \subseteq \operatorname{Mod}_{L \cup \{R\}}$, if Ω is an $EC_{\mathcal{L}^*}(L \cup \{R\})$ class such that for each (\mathfrak{A}, q) there is a unique R so that $(\mathfrak{A}, R, q) \in \Omega$, then $\{(\mathfrak{A}, a_1, \ldots, a_n, q) | (\mathfrak{A}, R, q) \in \Omega \text{ and } \langle a_1, \ldots, a_n \rangle \in R\}$ is an $EC_{\mathcal{L}^*}(L \cup \{c_1, \ldots, c_n\})$ class.

THEOREM. L^T has the Souslin-Kleene property.

PROOF. Suppose Ω , Ω^c are both $PC_{\mathbb{C}^{\mathfrak{F}}}(L)$ classes, i.e. there is a $\theta_0 \in L_0^{\mathfrak{F}}$, $\theta_1 \in L_1^{\mathfrak{F}}$ such that

$$\Omega = \{ (\mathfrak{A} \upharpoonright L, \mathfrak{F}(q)) | (\mathfrak{A}, \mathfrak{F}(q)) \models^{\mathfrak{L}^{\mathfrak{F}}} \theta_{0} \},$$

$$\Omega^{c} = \{ (\mathfrak{B} \upharpoonright L, \mathfrak{F}(r)) | (\mathfrak{B}, \mathfrak{F}(r)) \models^{\mathfrak{L}^{\mathfrak{F}}} \theta_{1} \}.$$

To obtain a contradiction suppose that Ω is not $EC_{ef}(L)$.

For each collection $0 \le i \le n$, $\phi_i \in L^2$ (the 2-sorted logic), we claim that there is an L_0 -model (\mathfrak{A}, q) and an L_1 -model (\mathfrak{B}, r) in Mod so that

(*)
$$(\mathfrak{A},q) \models^{\mathfrak{L}_2} \theta_0, \qquad (\mathfrak{B},r) \models^{\mathfrak{L}_2} \theta_1,$$

and for each ϕ_i , $0 \le i \le n$,

$$(\mathfrak{A},q) \models^{\mathfrak{L}_2} \phi_i \text{ iff } (\mathfrak{B},r) \models^{\mathfrak{L}_2} \phi_i.$$

Again as in the proof of the main theorem, we suppose not and derive a contradiction.

Definition 3. If $\mathfrak{D} \subseteq \operatorname{Mod}(\mathfrak{F})$, $\mathfrak{D}^* = \{(\mathfrak{A}, q) | (\mathfrak{A}, \mathfrak{F}(q)) \in \mathfrak{D}\} \subseteq \operatorname{Mod}$. We claim $(\mathfrak{D}^c)^* = (\mathfrak{D}^*)^c$.

$$(\mathfrak{A},q) \in (\Omega^c)^* \text{ iff } (\mathfrak{A},\mathfrak{F}(q)) \in \Omega^c \text{ iff } (\mathfrak{A},\mathfrak{F}(q)) \notin \Omega$$

 $\text{iff } (\mathfrak{A},q) \notin \Omega^* \text{ iff } (\mathfrak{A},q) \in (\Omega^*)^c.$

By our assumption, we have that for each η : $n + 1 \rightarrow \{0, 1\}$ either

$$\bigcap_{0\leqslant i\leqslant n}\operatorname{Mod}(\phi_i)^{\eta(i)}\cap\ \Omega^{\textstyle *}=\varnothing\quad\text{or}\quad\bigcap_{0\leqslant i\leqslant n}\operatorname{Mod}(\phi_i)^{\eta(i)}\cap\ (\Omega^{\textstyle *})^c=\varnothing.$$

Since $\bigcup_{\eta} \cap {}_{0 \le i \le \eta} \operatorname{Mod}(\phi_i)^{\eta(i)} = \operatorname{Mod}$, we know that $\Omega^* = \operatorname{Mod}_{L^2}^{e_2}(\psi)$. We will

now show that ψ is an invariant sentence of L.

$$\begin{split} (\mathfrak{A},q) &\models \psi \text{ iff } (\mathfrak{A},q) \in \Omega^* \text{ iff } (\mathfrak{A},\mathfrak{F}(q)) \in \Omega \\ &\text{ iff } \exists \text{ an expansion } \mathfrak{A}^* \text{ of } \mathfrak{A} \text{ to } L_0 \text{ s.t. } (\mathfrak{A}^*,\mathfrak{F}(q)) \models \theta_0 \\ &\text{ iff } \exists \text{ an expansion } \mathfrak{A}^{**} \text{ of } \mathfrak{A} \text{ to } L_1 \text{ s.t. } (\mathfrak{A}^{**},\mathfrak{F}(q)) \not\models \theta_1 \\ &\text{ iff } (\mathfrak{A},\mathfrak{F}(q)) \not\in \Omega^c \text{ iff } (\mathfrak{A},\mathfrak{F}(q)) \not\in (\Omega^c)^* \\ &\text{ iff } (\mathfrak{A},\mathfrak{F}(q)) \not\in (\Omega^*)^c \text{ iff } (\mathfrak{A},\mathfrak{F}(q)) \in \Omega^* \\ &\text{ iff } (\mathfrak{A},\mathfrak{F}(q)) \models \psi. \end{split}$$

But this is a contradiction since we assumed that Ω was not $EC_{\mathfrak{L}}(L)$.

Hence by (*) and the methods of our main theorem, we obtain $(\mathfrak{A}_{\delta}, q_{\delta})$, $(\mathfrak{B}_{\delta}, r_{\delta})$ for $\delta < \lambda$ such that

$$\begin{split} &\prod_{U} \left(\mathfrak{A}_{\delta}, q_{\delta} \right) \models \theta_{0}, \quad \prod_{U} \left(\mathfrak{B}_{\delta}, r_{\delta} \right) \models \theta_{1} \quad \text{and} \\ &\prod_{U} \left(\mathfrak{A}_{\delta} \upharpoonright L, q_{\delta} \right) \equiv_{\mathbb{C}_{2}} \prod_{U} \left(\mathfrak{B}_{\delta} \upharpoonright L, r_{\delta} \right). \end{split}$$

By Shelah's isomorphic ultrapowers theorem we have that there is an ultrafilter V so that

$$\begin{split} \prod_{U\times V} \left(\mathfrak{A}_{\delta} \upharpoonright L, q_{\delta}\right) &= \prod_{V} \prod_{U} \left(\mathfrak{A}_{\delta} \upharpoonright L, q_{\delta}\right) \cong \prod_{V} \prod_{U} \left(\mathfrak{B}_{\delta} \upharpoonright L, r_{\delta}\right) \\ &= \prod_{U\times V} \left(\mathfrak{B}_{\delta} \upharpoonright L, r_{\delta}\right), \\ \prod_{U\times V} \left(\mathfrak{A}_{\delta}, q_{\delta}\right) \models \theta_{0} \quad \text{and} \quad \prod_{U\times V} \left(\mathfrak{B}_{\delta}, r_{\delta}\right) \models \theta_{1} \,. \end{split}$$

This contradicts the fact that $\Omega \cap \Omega^c = \emptyset$. So we are done.

REMARK. We say that Ω is Σ_1^1 in \mathbb{C}^* if it is the class of relativized reducts of some \mathbb{C}^* -definable class; i.e., if there is a 0-morphism $L \to^{\alpha} K$ which is the identity except for the possibility that $\alpha(\forall) \neq \forall$, and an \mathbb{C}^* -definable class Ω' of K-structures such that every $(\mathfrak{A}, q) \in \Omega'$ is α -invertible and $\Omega = \{(\mathfrak{A}, q)^{-\alpha}: (\mathfrak{A}, q) \in \Omega'\}$. If we assume that $(\mathfrak{A}, q)^{-\alpha} = (\mathfrak{A}^{-\alpha}, q^{-\alpha})$ where $q^{-\alpha} = \{B \cap |\mathfrak{A}^{-\alpha}| | B \in q\}$ and that $\mathfrak{F}(q^{-\alpha}) = (\mathfrak{F}(q))^{-\alpha}$, then the following stronger result is provable.

THEOREM. If Ω and Ω^c are Σ^1_1 in $\mathfrak{L}^{\mathfrak{F}}$, then Ω is $EC_{\mathfrak{L}^{\mathfrak{F}}}(L)$, i.e. definable.

The examples given in §1 all satisfy the stronger requirements.

COROLLARY. $\mathfrak{L}^{\mathfrak{F}}$ has the weak-Beth property.

PROOF. This is essentially the proof given in [J]. Assume Ω is $EC_{\mathfrak{C}^{\mathfrak{F}}}(L \cup \{R\})$ such that for each (\mathfrak{A},q) there is a unique R so that $(\mathfrak{A},R,q) \in \Omega$. Let $\Omega = \operatorname{Mod}_{\mathfrak{C}^{\mathfrak{F}}}(\theta(R))$; then $\psi = \theta(R) \wedge R(c_1,\ldots,c_n)$ is an invariant sentence

of $L \cup \{R, c_1, \ldots, c_n\}$. Let $\Omega^{\#} = \operatorname{Mod}(\psi) \upharpoonright L \cup \{c_1, \ldots, c_n\}$. Then $\Omega^{\#}$, $(\Omega^{\#})^c$ are both $PC_{\mathcal{C}}(L \cup \{c_1, \ldots, c_n\})$ -classes. Hence $\Omega^{\#} = \{(\mathfrak{A}, a_1, \ldots, a_n, q) | (\mathfrak{A}, R, a_1, \ldots, a_n, q) \in \Omega \text{ and } \langle a_1, \ldots, a_n \rangle \in R\}$ is $EC_{\mathcal{C}}(L \cup \{c_1, \ldots, c_n\})$.

Problem. Does an arbitrary $\mathcal{L}^{\mathfrak{F}}$ have any stronger separation properties, e.g., interpolation or isomorphic ultrapowers? $\mathcal{L}^{\mathsf{Top}}$ has an isomorphic ultrapowers theorem.

BIBLIOGRAPHY

- [B-1] K. J. Barwise, Axioms for abstract model theory, Ann. Math. Logic 7 (1974), 221-265.
- [B-2] ——, Back and forth through infinitary logic, Studies in Model Theory, Math. Assoc. Amer., 1973.
 - [Be] M. Benda, On reduced products and filters, Ann Math. Logic 4 (1974), 1-29.
 - [C-K] C. C. Chang and H. J. Keisler, Model theory, North-Holland, Amsterdam, 1973.
- [C-N] W. W. Comfort and S. Negrepontis, *The theory of ultrafilters*, Springer-Verlag, Berlin and New York, 1974.
- [G-1] S. Garavaglia, Completeness for topological languages, Notices Amer. Math. Soc. 22 (1975), A-473. Abstract #75T-E36.
- [G-2] , Model theory of topological structures, Doctoral Dissertation, Yale Univ., New Haven, Ct., 1976.
- [K] H. J. Keisler, Formulas with linearly ordered quantifiers. The syntax and semantics of infinitary languages, Springer-Verlag, Berlin and New York, 1969.
 - [J] F. Jensen, Interpolation and definability in abstract logics, Synthese 27 (1974), 251-257.
 - [L] P. Lindström, On extensions of elementary logic, Theoria 35 (1969), 1-11. MR 39 #5330.
- [McK] T. McKee, Infinitary logic and topological homeomorphisms, Thesis, Univ. of Wisconsin, 1974.
 - [S-1] J. Sgro, Completeness theorems for topological models, Ann. Math. Logic (to appear).
- [S-2] —, Completeness theorems for continuous functions and product topologies, Israel J. Math. (to appear).
 - [S-3] —, The decision problem for L(I), the interior operator logic (in preparation).

DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY, NEW HAVEN, CONNECTICUT 06520