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A CHARACTERISATION OF RIESZ PROXIMITIES

K. C. CHATTOPADHYAY AND H. L. VASUDEVA

Abstract. The purpose of this note is to characterise separated Riesz

proximities generated by clusters.

1. Introduction. In the theory of proximity spaces of Efremovic [2], Smirnov

[5] proved the following result.

A set A" with a binary relation 'A close to B' written (A II B) is a proximity

space iff there exists a compact Hausdorff space Y in which X can be

topologically embedded so that

A n 5 in A" iff I DB ^ 0,

(A denotes the closure of A).

The above result characterises Efremovic proximities. Lodato [3] char-

acterised what are now known as Lodato proximities. The purpose of this

note is to characterise Riesz proximities.

2. Preliminaries.

2.1. Definitions. Let A" be a set, and c: P(X)-> P(X) a map with the

properties: c(0) = 0, A c c(A) for each A in P(X) and c(A u B) = c(A)

U c(B) for A, B in P(X). Then c is called a Cech closure operator and the

pair (A", c) is called a Cech closure space. A closure space (X, c) is R0 if for

any two points x and y of X, x G c(y) implies^ G c(x). It is called Rx if for

any x in X and A in P(X), c(x) n c(A) ¥= 0 implies jc G c(A).

Let (A", c) be a closure space and Y c X. Define cY: P(Y)-> P(Y) by

cY(A) = c(A) n Y for A G .P(F). It is easy to verify that cY is a closure

operator on Y. The pair (Y, cY) is called a subspace of (A", c). A mapping /of

the closure space (T,, c,) into the closure space (y2, c2) is said to be

cl-continuous if f(cx( A)) c c2(/(/l)) VA G /"(F,). A one-one mapping/ of

the closure space (Yvc{) onto the closure space (Y2, c2) is said to be a

cl-isomorphism of (Yj, c,) onto (y2, c2) if both/and/-1 are cl-continuous.

2.2. Riesz proximity spaces. As in Thron [4] we define a basic proximity

space to be an abstract set X with a binary relation IT on its power set

satisfying the following axioms: (i) n = II"1, (ii) A u B G 11(C) iff A G

n(C) or B G ri(C), (iii) A n B ^0 implies A G 11(B), (iv) 0 g ll(/i) for

every ,4 E P(X).

Here Il(^) = [£: (B, A) G II]. When 11 is a basic proximity on X, then the

pair (A", 11) is called a basic proximity space. A proximity space (A", 11) is said
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to be separated if x £ H(y) implies x = y. A basic proximity II on X is

called Riesz proximity (RI-proximity) if it satisfies the following additional

axiom:

For* Ê X,A,B G P(X),A,B G II(.x)implies/i E 11(B).

2.3. Definition. The operator cn(A) = [x: x G 11(^4)] is called the closure

operator induced by the proximity IT.

2.4. Theorem. For every RI-proximity, cn is a Cech closure operator

satisfying the R¡-axiom.

Proof. The fact that cn is a Cech closure operator is well known. Suppose

y G cu(x) n cn(A). Then v G Il(x) and y G 11(A) which, in turn, implies

x G U(y) and A G Il(j>). Since IT is a Riesz proximity, it follows that

x G 11(A).

2.5. Theorem. Given any R{-closure space (A, c), define Il0 by A Il0 B iff

c(A) n c(B) i= 0. Then II0 is an RI-proximity relation on X and is compatible

with the given closure, that is, cn = c.

Proof. That II0 is a basic proximity relation on P(X) is a trivial con-

sequence of the closure axioms. To prove that no is a Riesz proximity,

suppose A, B G Il0(x) where x G X. Then c(A) n c(x) =£ 0 and c(B) n

c(x) i= 0. Since c is an /?,-closure, it follows that x G c(A) f) c(B) and

heneen G U0(B). Now

cno(^)=[xGA:xGno(^)]

= [x G A: c(x) n c(/l) # 0] = [x G A: x G c(A)] = c(,4).

The fact that c is an /?,-closure has been used to prove the above compatibil-

ity.

2.6. Theorem. Given an RI-proximity space (A,I1) and no defined by

A n0 B iff cn(A) n cn(B) =£ 0, we have that A U0 B implies A U B for all

subsets A and B of X. Thus U0 is the smallest RI-proximity relation compatible

with the closure in an R¡-closure space.

Proof. It follows immediately from 2.4 and 2.5.

Grills, clans and clusters. Grills were introduced by Choquet [1]. Below we

give the definition of a grill. Elementary results on grills are mentioned in

Thron [4].

2.7. Definition. A family § of subsets of X satisfying the properties (i)

B D A G § implies B G S, (ii) A u B £ <3 implies A G § or B G §, (iii)

0 £ ê, is called a grill. For a fixed A, T(A) will denote-the set of all grills on

A.

The following facts are evident: (i) For a proper grill @ (nonempty),/I c A

implies AG§otX\AE§. (ii) For a basic proximity space (A, IT), Il(y4) is

a grill on A for all A G P(X).
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2.8. Definitions. For a basic proximity (A", n) a family g of subsets of X

is called a U-clan if it satisfies the following conditions: (i) g is a grill, (ii)

A,B E§ =>A E U(B).

A Il-clan g is said to be a maximal u-clan if S c g,, where <3, is another

Il-clan, then S ■ §,. A n-clan 8 is called a Il-cluster if it satisfies the

following additional condition: g c Il(/1)=>/1 G g.

The following facts are immediate: (a) if g, and §2 are clusters from X and

g, C g2, then g, = g2. (b) If A n 5 ^ 0 for every Ä G g, where g is a

cluster, then .4 G g. (c) Every Il-cluster is a maximal u-clan.

2.9. Theorem. ^ äoj/c proximity space (X, n) « an RI-proximity space iff

H(x) is a cluster for all x G X.

Proof. Suppose (A", II) is a Riesz proximity space. For x G X, surely U(x)

is a grill. Let A, B G TI(jc). Since II is a Riesz proximity, it follows that

A G n(5). If Il(x) c I1C4), then x G n(/l) and hence A G n(x). The con-

verse is an immediate consequence of the definition of the cluster.

2.10. Corollary. // g is a cluster containing x, then g = U(x).

Proof. The result follows from Definition 2.8 (a) and g c n(x).

3. Main result. To state the main result we shall need the following

3.1. Definition. A subset F of a closure space (A", c) is regularly dense in X

if given F c X,p g c(F), there exists a subset £ of F with the property

p G c(E) c X - c(F).

Remark. If Y is regularly dense in X, then c(Y) = X.

3.2. Theorem. Let X be a set and II a binary relation on P(X). The

following are equivalent:

(I) There exists an Rx-closure space (Y, c) and a mapping f of X into Y such

that f(X) is regularly dense in Y,f is a cl-isomorphism of X onto f(X) satisfying

cj(X)U(x)) = f(x) and

(*) A UBinXiffc(f(A))nc(f(B))^0.

(II) II is a separated Riesz proximity satisfying the additional axiom:

Given A II B in X, there exists a cluster g to which both A and B belong.

Proof. Suppose (I) holds and define II by (*). That II is a basic proximity

follows immediately from the properties of closure. Suppose x G 11(7). Then

c(f(x)) n c(f(y)) ¥= 0. Since c is an Ä,-closure, it follows that f(x) G

c(f(y)). Thus f(x) G c(f(y)) n f(X) that is, f(x) G cf(X)(f(y)) = f(y).
Since/is a cl-isomorphism of X onto/(A"), it follows that x = y. This proves

that II is a separated proximity. We next show that II is a Riesz proximity.

For x G X, A, B G P(X), suppose A, B G YI(x). Then c(f(x)) n c(f(A)) *=

0 and c(f(x)) n c(f(B)) ^ 0. That the closure operator is Ä, implies

f(x) G c(f(A)) n c(f(B)), that is, A G 11(5). It remains to prove for (A, B)

G II there exists a cluster to which both A and B belong. Now (A, B) G II,
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which implies that there exists a.y G c(f(A)) n c(f(B)). Define

Ty=[DcX:yec(f(D))].

Surely A and B are in ry. We omit the details of the fact that ry is a cluster

since they are quite similar to the ones given in Lodato [3].

For the converse suppose (II) holds. Given x G X, the class H(x) is a

cluster from A, by 2.9. For a subset A of A, let A * be the set of all clusters to

which A belongs. We will denote the set of all clusters from A by Y. Observe

that

(3.2.1) (A u B)* = A* u B*,

since clusters are grills.

Following Lodato [3], we say that a subset A of A absorbs a subset ß of Y

iff A belongs to every cluster in ß, that is, ß c A *. For any subset ß of Y, we

define c,(/J) by:

33 G c, ( /? ) iff every subset £ of A which absorbs ß is in 33.

It follows as in Lodato [3] that

(3.2.2) cdßiU ß2) = cx(ßl)öcl(ß2)

for all subsets ßx, ß2 in P(Y) and c,(33) = 33 for every 33 in Y.

Let / be the mapping which assigns to each x in X the cluster H(x)

determined by it. This mapping is well defined. Define

(**) c(ß) = (f-l(ß)YuCl(ß).

Observe that c(f(A)) = A*. By definition

c(f(A)) = {r>(f(A)))* u c,(f(A)) = A*u cx(f(A)) = A*,

since c{(f(A)) c A*. The inclusion cx(f(A)) c A* is a consequence of the

fact that ^ absorbs f(A).

We now show that closure axioms are satisfied by the closure defined by

(••)■

Since ß C c,(¿8), it follows that ß c c(ß). The fact that c(0) = 0 is

trivial. (3.2.1), (3.2.2) and the fact that/"1 distributes on unions imply that

c(ßx u ß2) = c(ßx) u c(ß2). Thus (Y, c) is a closure space. We shall next

show that (Y, c) is an Ä,-closure space. For 33 G Y,/~'(33) is either empty or

equals x for some x in A. If /_1(33) = 0, then c(33) = c,(33) = 33. On the

other hand, if/~'(93) = x for some x in A, then 33 = TL(x). Hence

c(33) = (/-' (33))* u c,(33) = U(x) u U(x) = Tl(x) = 33.

The separated character of Riesz proximity implies / is one-one. That / is a

cl-isomorphism shall be accomplished by showing (i) cHX)(f(A)) D f(cn(A))

for every A in P(X), and (ii)/_1(9w(/(^)>) c cn(A) for each A c A. For

(i), suppose x G cn(A). Then A G U(x). Thus U(x) & A* = c(f(A)) which,

in turn, implies Ii(x) G c/w(/(,4)). In order to prove (ii), suppose 33 G

c/(x)(f(A))- Tnen there exists an x G X such that 33 = I1(jc) and Il(x) G
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cKx)U(A)) = c(f(A)) n f(X). Thus A G U(x), that is, x G cn(A).

A II B iff there exists a cluster to which both A and B belong, that is,

A* n B* ̂ 0; thus c(f(A)) n c(f(B)) ¥= 0 iff A U B.
It remains to check that f(X) is regularly dense in Y. Suppose ß c Y and

330 £ c(ß) = (f~l(ß))* U c,(ß). Then/-'(/?) G 330 and there exists a sub-

set A which absorbs ß and does not belong to 330. Since 330 is> m particular, a

grill, it follows that A u f~\ß) £ 330. Using the fact that 330 is a cluster, it

follows that there exists a 5 G 330 such that ^ u f~\ß) £ 11(A), that is,

.4 G ü(ß) and/"'(/?) G II(ß). Let 33 be any element of B*. Then B E 33

and hence f~x(ß) and /I do not belong to 33. Thus it follows that 33 G

Y \ c(ß). Clearly 330 G B* = c(/(5)) C F \ c(/?). This completes the proof.

We end this section with an example of a Riesz proximity space in which a

pair of proximal sets are contained in no cluster.

3.3. Example. Let X = Xx u X2, Xx n A*2 = 0 and A", and A"2 are both

infinite. Define a closure c on X by

c(D) =

D if D is a finite subset of X,

X¡ \J D    if D is infinite and A} n Z) is finite, i,y = 1, 2, and / ^ j,

X otherwise.

(A", c) is an 7?,-closure space. In fact, it is a 7,-topological space. We next

define a binary relation II on P(X) as follows: (D, E)Eli iff c(D) n c(E)

t*0 or both D and E are infinite. (A", II) is a Riesz proximity space.

Moreover,

U(x) =[D: x E DotX¡ n Dis infinite ]

if x E X¡, i = 1,2. That Il(x) is a cluster follows from the fact that (A", II) is

a Riesz proximity space. Consider

g * = [ D: D is an infinite subset of A"].

g* is a maximal Il-clan. For x¡ E X¡, i = 1, 2, g* c H([xx, x2]). However,

[x,, x2] G g*. Thus g* is not a cluster. Let 33 be any n-cluster. Then

93 <Z. g *, for otherwise 33 = g *-a contradiction. Thus there exists an x G A"

such that [x] G 33 and this implies that 33 = U(x). Clearly (A",, A"2) G II, but

there exists no U(x) to which both A', and A"2 belong, for the existence of

such an x would contradict the fact that A", n A"2 = 0.
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