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AND THEIR L-FUNCTIONS

STUART TURNER

Abstract. Let k be a global field of characteristic p > 0 with field of

constants Fí._Let k be an algebraic closure of k. In this note we study the

subfields of k which are maximal unramified abelian extensions of k with

field of constants ¥g. Each of these fields may be regarded as an analogue of

the Hilbert class field of algebraic number theory [1, p. 79]. In §1 we recall

the construction of these class fields and in §2 we show that if k has genus

one, they are all F?-isomorphic. In §3 we show that this is not necessarily

the case if the genus of k is greater than one. The argument there is based

on an observation about the ¿-functions of the fields.

1. Let k£ be the idele group of k and identify kx with the principal ideles in

kj[. Let k\ be the ideles of module 1 and U be the maximal compact subgroup

of kj¡. Let D be a complete nonsingular curve defined over Fq with function

field isomorphic to k. D is unique up to Fq isomorphism. Let J(D)(Fq) denote

the group of F?-rational points on J(D), the Jacobian variety of D. J(D)(Fq)

is a finite group. Let h = card(J(D)(Fq)). k\/kxU is canonically isomorphic

toJ(D)(Fq).

We now recall straightforward (and well-known) consequences of the

existence theorem [1, Chapter VIII, in particular §3], [3, Chapter XIII, §9].

Let z G k¿ with module (z) = q. Let «,, . . . , uh be representatives of the

cosets of kxU in k\, ux G kxU. Then N¡ = {zu¡} X kxU are distinct open

subgroups of k¿ and each k¡¡/N¡ is canonically isomorphic to kxA/kxU. The

class fields k1,k2, . ■ ■ , kh of NUN2, ■ ■ ■ , Nh, respectively, are unramified

abelian extensions of k each with constant field Fq and each Gal(rc,/A:) is

canonically isomorphic to J(D)(Fq).

Furthermore, these k¡ are the only maximal unramified abelian extensions

of k with constant field F because any x G k¿ with module (x) = q lies in

one of the cosets zu¡kxU of kxUin k¿.

Let L be the constant field extension of k of degree h. Lis the class field of

the subgroup {zh} X k\ so L&, is the class field of

{zh} Xk\r\ {zu,} X kxU = {(zw,.)*] X kxU,       i = 1, . . . , h.

But (zu¡)h and (zu)h represent the same coset of k\ in k¿, so Lk¡ = Lkp

1 < ij < h.

Let C, be a complete nonsingular curve defined over Fq with function field
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isomorphic to k¡. The C, are unique up to Fç-isomorphism. Since k¡ is an

unramified extension of k, there exist surjective étale morphisms y¡: C¡ —* D

defined over F . Let g be the genus of D; then, g(C¡), the genus of C¡, is given

by 2g(C¡) - 2 = h(2g - 2) [3, Chapter VIII, Corollary to Proposition 14].

Summarizing the discussion in geometric terms we have

Theorem 1. Let D be a complete nonsingular curve of genus g defined over

¥q. Let J(D) be the Jacobian variety of D and G = J(D)(Fq) be the group of

¥ -rational points of J(D). Let h = card G. Then there exist h complete

nonsingular curves C, defined over F? each of genus h(g — 1) + 1, and mor-

phisms y¡: C¡ ~* D defined over F? such that y¡ is an étale cover of degree h. The

Galois group of the cover y, is isomorphic to G.

Observe that for i #y there does not exist any morphism Ô: C,~* Cj such

that y- » fi = y,; for the existence of such a morphism would imply the

existence of a A:-isomorphism of &. onto a subfield of k¡, but this is impossible

because kj and k¡ are distinct normal extensions of k in k.

However, if D has genus one, C, is F^-isomorphic to Cj for all i, j, 1 < i,

j < h. This is proven in §2.

2.

Lemma 1. Let v be a place of k of degree one. Then v splits completely in

precisely one of the class fields k¡, 1 < i < h.

Proof. The places of A:, which lie above v are in one-to-one correspondence

with the cosets of k*N¡ in k¿ [3, Chapter XIII, Proposition 14], so v splits

completely in k¡ if and only if [k¡¡: k¿N¿] = h. On the other hand, [kj¡:

N¡] = h, so v splits completely in ki if and only if kj¡ c N¡ = {zu¡} X kxU.

Let rv be the valuation ring in kc. r* c N¡ for all », 1 < i < A. Let ttv be a

prime element in rv. Since v is a place of degree one, module (tr~x) = q. So

trv £ TV, if and only if ircz~l E UjkxU; there is a unique » for which this is the

case.

Remark. The hypothesis of Lemma 1 is not always satisfied. There exist

global fields which do not have places of degree one.

Lemma 2. // k has genus one and k¡ is the class field determined by N¡, then

there is a unique place v of k of degree one that splits completely in k¡.

Proof. k¡ has genus one, hence has a place w of degree one. w has residue

field F? and lies over a place v of k of degree one. w has h distinct conjugates

w = wx, . . . , wh over v because 'Ze(w¡)f(w¡) = h, e(w¡) = 1 for / = 1, . . . , h,

and/(w) = 1.

Theorem 2. Let notations be as in Theorem 1 and assume that D is a curve

of genus one. Then there is a canonical one-to-one correspondence between the

rational points of D and the curves C¡. A rational point P of D corresponds to

the curve C, // and only if there are h points of C, in the fiber y~ l(P).
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Proof. D is F^-isomorphic to J(D), so D has h rational points. The

theorem now follows from Lemmas 1 and 2.

Throughout the rest of this section we assume that k has genus one.

Let v be a place of k and p: k -» kv be an embedding of k into the

completion of k at v. Let k! be a field and a : k' -» k be an isomorphism.

Denote by av the place of k' arising from the embedding p ° a: k' -» kv.

Denote by v(i) the place of k which corresponds to the class field k¡.

Lemma 3. Let ß: kj -> k¡ be an F' - isomorphism such that ß(k) c k and let

a = ß\k. Then v(j) = av(i). Conversely, if a: k —» k is an F - isomorphism such

that v(j) = av(i), then there is an F'q-isomorphism ß: kj -» k¡ such that ß\k =

a.

Proof. Let w be a place of k¡ of degree one. ßw is a place of k} of degree

one. By Lemma 2, w lies over v(i) and ßw lies over v(j) so v(j) = tw(i').

To prove the converse observe that there are h distinct embeddings /?,:

kj -*k,\<i<h, such that ß\k = a.

The ßj all have the same image Link. L is an unramified abelian extension

of k with field of constants Fq. It suffices to show that L = k,. Let w be a

place of kj of degree one and u be the place of ßx(kf) such that w = ß{u. By

Lemma 2, w lies over u(y') and u lies over u(/) because v(j) = av(i). So u is a

place of kt and L = k¡.

Let ¿(Z>), fc(C,) and ¿(C,) be the function fields of D, C, and C,,

respectively. The morphisms y, and y, of Theorem 1 define injections y*:

k(D) -> k(C,) and y/: A:(£>) -» fc(Cy). Choose F9-isomorphisms of &(/>) with

)t, of &(C,) with k¡, and of &(Cy) with kj-, so that y,* (resp. y*) is compatible

with the inclusion k c &,. (resp. k c &•). Identify k(D) with &, A;(C,) with k¡,

and /c(C,) with A:y by means of these isomorphisms. The places v(i), 1 < / <

h, of k are thus identified with places of k(D). Let P¡, 1 < / < h, be the

rational points of Z) corresponding to the places v(i), 1 < / < h, of ac(Z)),

respectively.

Theorem 3. Le/ í/it? notations be as in Theorem 1 and assume that D is a

curve of genus one. Let r¡ be an F -automorphism of D. Then there exists an

F -isomorphism 8: C, —» C such that y, ° S = tj ° y, // and only if ^(P,) = Pj.

Proof. Let tj*: k(D) —> k(D) be the automorphism of k(D) induced by tj.

tj(P,) = Pj is equivalent to the condition v(j) = t)*v(i). By Lemma 3 there is

an Fq-isomorphism ß: k(Cj) -» k(C¡) such that ß\k(D) = tj*. ß determines an

F -isomorphism 8: C, —* C such that y ° 5 = tj ° y;.. The proof of the con-

verse follows similarly from the first assertion of Lemma 3.

Corollary. Let the notations be as in Theorem 1 and assume that D has

genus one. Then there exist F' -isomorphisms 8: C, —> Cjfor all if, 1 < ij < h.

Proof. Since D has genus one, the group of F9-isomorphisms of D acts

transitively on the F^-rational points of D. The assertion now follows from

the theorem.



42 STUART TURNER

3. Returning to the discussion in §1, recall that the fields k¡ c k were

defined as the class fields of subgroups N¡ of k¿. Let £2, be the group of

characters of kj¡ trivial on N¡ and ß,' be the elements of ß, distinct from the

trivial character. Then the Dedekind zeta function of k¡ is given by S^(s) =

&(*)• IL€0¡¿(j,<o) [3, Chapter XIII, §10].
In case k has genus one, the L(s,u) are all identically one [3, Chapter VII,

§7], but if the genus of k is greater than one, these /.-functions are nontrivial.

Throughout this section we assume that the genus of k is at least two.

For s6C, let ws: k% -» Cx be the quasicharacter defined by co^(z) = \z\s;

».: k\ -> 1.

Lemma 4. Let co G ß,, co ̂  1, cz/jc/ fe/ co(zm,) = q~s'(ui). There is a one-to-one

correspondence between ßt a/ic/ ß(. given by co <-» cocoJ (u)).

Proof, co has order h so q~s<(u) is an Ath root of one and j,(co) is defined

modulo elements of (2?7ï/log q)Z. co and us induce the trivial character on

k*U, so uus G ß, if and only if coco^zm,) = 1.

This is equivalent to s = s,(co) (mod(2ï7//log q)Z). The verification that the

correspondence between ß, and ß, is one-to-one is left to the reader.

Lemma 4 and the definition of the L-functions give

Proposition.

M'W*(j) n Hw^s) - ¡k{s) n L(*>,s + *,(«)).
u E iî'i u e Í2',

¿*, = £*,> f°r 1 < ij < A, if and only if J(C¡) is F?-isogenous to J(C) [2,
Theorem 1].

Corollary. Let the notations be as in Theorem 1 and assume that D has

genus at least two and that h = 2. Then J(Cy) is not Fq-isogenous to J(C2) and,

hence, C, is not F' -isomorphic to C2.

Proof. Let co e ß',; then Ck¡(s) = Çkj(s) if and only if

L(w,s) = L(u,s + s2(u)),

where q~s¿a) = - 1 because ojuJiM G ß2. So

i2(co) = tti/\o% c7(mod(27r//log q)Z).

On the other hand L(u,s) has period 2tti/log q, so

L(u,s) ¥= L(ti3,s + s2(u)).
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