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PROPERTIES OF STANDARD MAPS

GARY M. HUCKABAY1

Abstract. Let X and Y be compact metric spaces. Let S (X, Y) denote the

collection of standard maps of X onto Y. We establish that S(C,Y) is a

dense subset of C(C,Y), where C is the Cantor set. If/is a standard map

and G(f,Y) {A(f,Y)} denotes the subgroup of H(X) which preserves

{interchanges} the point-inverses of/, then there is a continuous homomor-

phism of A (/, Y) into H ( Y) with kernel G (/, Y). We also show that G (/, Y)

and A{f, Y) are closed subsets of H(X).

1. Let A" and F be topological spaces. Define H(X,Y) [C(X,Y)} to be the

collection of homeomorphisms {continuous maps} of X onto F. If X = F we

agree to write H(X) {C(X)}. If / G C(X,Y), then G(f,Y), defined by

{h E H(X): f ° h = /}, is a subgroup of H(X). Let us say that / is a

standard map if and only if (1) / is an identification and (2) f(a) = f(b)

implies there are sequences xn E X and hn E G (/, F) satisfying xn -> a and

hn(xn)^>b. Standard maps were first studied by A. Vobach [5]. In [5],

Vobach showed that each compact metric space is the standard image of C,

and the author [3], [4] has shown that each locally compact, separable

(complete, separable) metric space is the standard image of N x C(P), where

JV denotes the positive integers and P the irrationals. The utility of these

results is that the standard images of a given space are classified up to

homeomorphism by the conjugacy classes of the group G(f,Y) ([5], [3] and

[4])-

2. In the sequel all spaces are compact and metrizable. We endow all

function spaces with the compact-open topology.

Notation. S(X,Y) = {/ G C(A\F): / is a standard map). If / G C(X,Y)

we shall denote the partition {/" \y): y E Y) of X by K(f).

Definition. Let / G C(A",F). We define the group A(fY) to be {h E

H(X): D E K(f) implies h(D) G K(f)}.
Remark. If D E K(f) and h E G(f,Y), then h(D) = D.

Theorem 1. G(f,Y) is a normal subgroup of A(fY) and there is a

continuous homomorphism a which takes A(f,Y) into H(Y) with kernel

G(f,Y).

Proof. We establish the latter statement first. Let h G A (/, F) and define
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a(h) = / » h ° f~x. By a well-known theorem (see [1, p. 123]) a(h) is continu-

ous if a (h) is single-valued. But this is clearly true since h preserves the fiber

structure of/. Similarly, [a(h)]~l is continuous and therefore a(h) G H (Y).

a is continuous: Let (F,U) be any subbasic open subset of H(Y). Then

a'\(F,U)) = (f-\F),f~\U)) n A(f,Y). Hence a is continuous.

a is a homomorphism: Let hx,h2 G A(f,Y). Then a(/i, ° /i2) =

/ ° A, ° A2 °/_1 = (/ ° hxf~x) ° (f ° h2 °/_I) since A, and /¡2 preserve the

fiber structure of/. Thus, a(A, ° h^ = «(Aj) ° «(A^ as required.

kernel a = G(f,Y): Clearly, for each h G G(/,r), a(A) - ly. If a(h) =

\Y, then, by definition, /4»/"' = lr. For each y G y we have

f(h(f-\y))) = 7 or, equivalently, h(f~\y)) = /"'OO- But h G ̂ (/,7) and

hence h(f-\y)) = /-1(>'). Therefore, h G G(/,y) and G(/,7) = kernel a.

This in turn implies the normality of G (/, Y) in ^4 (/, Y).

Since y is compact and metrizable the compact-open topology on C(Y)

coincides with the sup-metric topology. Moreover, the sup-metric d+ on

C( Y) is a complete metric.

Theorem 2. ^ (/, y ) a«¿ G (f, Y) are closed subsets of H (A).

Proof. To see that A (f, Y) is closed we consider a limit point h of A (f, Y)

and a sequence hn G ^(/.K) such that hn -> A. Let a: ^(/,y)-» #(y) c

C(Y) be the continuous homomorphism defined in Theorem 1. We will

establish that a(h„) converges to some element k of H(Y) and that a(h) = k.

Let/? and/?+ {d and d + ) be the complete metrics of A" and C(A) { Y and

C(y)}, respectively. Let e > 0 be given. Since/is uniformly continuous there

is a S > 0 such that d(f(x),f(y)) < s for each x and y satisfying p(x,y) < S.

Now hn —> h. Therefore, there is an integer M such that n,m > M implies

P+(hn,hm)<d. Thus,

d(a(hn)(y),a(hm)(y)) = d(f(hn(f-l(y)))j(hm(f-l(y)))) < e

provided n,m > M, y arbitrary. Hence a(hn) is a Cauchy sequence in the

complete space C(Y). Let a(hn)-±k G C(Y). Then /»A^f'^it and

/ o hn -» k » /. Therefore, f ° h = k ° f. Ina similar way /°/i„~l^/°/i_1 =

/c' °/,Â:' G C(y). Hence fc « jfe' . iy « jfc' o jfc. Thus /c G H(Y).f° h o/'1

= A: implies h E A(f, Y). We conclude A(/,y) is closed.

G(f,Y) is the kernel of a continuous homomorphism and therefore is

closed in A(f, Y). But A(f, Y) is closed in H(X) and hence G(f, Y) is closed

in//(A).

Remark. The reader should note that Theorems 1 and 2 do not require the

map / associated with G (/, Y) and A (f, Y) to be a standard map. In fact,

Theorems 1 and 2 are true when/is any continuous map.

Let/ G C(C,A), X a compact metric space. Clearly we always have the

inclusion G(f,X) c A(f,X). Since A(f,X) describes a subgroup of H(X),

one might ask whether A(fX) describes anything other than {1*}. In other

words, is it true that A (f,X) ^ G (/,A) ?
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R. D. Anderson (see [2, p. 12]) has established the following theorem: Let

X be a compact metric space and h E H(X). Then there is a Cantor set C,

f E C(C,X) and a E H(X) such that f ° a = h ° /. This shows that/can be

chosen from C(C,X) in such a way that A(f,X) ^ G(f,X) when h =£ lo-

osing these techniques we prove in [3] that / can always be chosen from

S(C,X).

Our last theorem deals with the relationship of S(C,X) to C(C,X). Let us

first establish the following two lemmas.

Lemma 1. Let X be homogeneous and f E S(Y,Z). Then f ° -n: X X Y^Z
is standard where m is the projection map on the Y-coordinate.

Proof. This follows immediately from the homogeneity of X and the

standardness off. The proof appears in [3].

Lemma 2. Let h be a homeomorphism of a Cantor set C, onto a Cantor set

C2. Iff E S(C2,X), thenf ° h E S(CX,X).

Proof. The proof appears in [6].

Theorem 3. Let M be a compact metric space and C the standard "middle-

thirds" Cantor set. If f E C(C,M) and p E S(C,M), then there is a q E

S(C,C) such that p ° q E S(C,M) and d+(f,p ° q) < e, e some preassigned

positive number, and d+ the sup-metric on C(C,M).

Proof. Let Cy. {1 < / < n) be a decomposition of C satisfying the

following conditions:

(1) Each C, is both open and closed,

(2) C, n Cj - 0, i ¥> j, and
(3) diam/(C,) < e for each i.

Define E} = p~\f(Cy)) and Dj = C X Ej X {\/j}. Let <$ = U {Dy. 1 < j

< n} and note Dj, «* <$ =* C. If h G G(p,M), then h(Ey) = Ej for all j.

Construct a E H(C,^>) such that a(Cy) = Dj and define q E C(C,C) by

q = it ° a where it is the projection map on the ^-coordinate, it G S(^),C).

If ir(cx,ex,\/jx) = 77-(c2,e2,l//2), then ex = e2 by definition of it. Let xn =

(cx,ex,\/jx) for each n and choose h G H(C), k E #({1/1,1/2, . . . , 1/«})

such that h(cx) = c2,k(\/jx) = l/j2, respectively. Then (h,lc,k) G G(tt,C)

and (h,lc,k)(xn) -> (c2,e2,\/j2) (equals in fact) as required. In view of Lemma

2, 77 » a G S(C,C). Define g E C(C,M) by g = p ° q = (p ° m) ° a. By

Lemma 2, g G S(C,M) if p ° m E S(^D,M). But p ° tt G 5(6D,M) by

Lemma 1. Hence g E S(C,M).

Let x E C and x E C for some j. Consider g(x) = p(ir(a(x))). Fhen

a(x) G Dj and ir(a(x)) E £}. Therefore, p(-Tr(a(x))) G f(Cf) which yields

d+(f,p°q)< e.

Corollary 1. S(C,M) is a dense subset ofC(C,M).

Remark. Note that Theorem 3 actually proves that  {p ° S(C,C)} n
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S(C,M) is a dense subset of C(C,M) for each/? G S(C,M).
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