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CONNECTED AND CONNECTIVITY

MULTIFUNCTION

R. E. SMITHSON

Abstract.   Conditions are given under which multifunctions which pre-

serve connected sets will have a connected graph.

Introduction. In [2] Long presented a condition under which a connected

function is a connectivity map. The results in [2] required that both the

domain and range spaces be first countable. In this note we generalize Long's

condition so that the results are valid for multifunctions and we remove the

requirement that the spaces be first countable.

A multifunction F: X -* Y is connected if and only if for each connected set

M C X, F(M ) is connected in Y. The graph map G for F is the multifunction

G: X -* X X Y defined by G(x) = {x} X F(x). Then F is a connectivity

multifunction if and only if G is connected. Further, the multifunction F is

upper semicontinuous (u.s.c.) if and only if for each x E X and each open set

V C Y with F(x) C V there is an open set U containing x such that

F(U) C V. Also the multifunction F is called point closed (compact, connected)

in case F(x) is closed (compact, connected) for all x E X.

If A is a subset of a topological space, then the closure of A is denoted by

A*.

The main results. Before proceeding to the principal result in this section,

we present an example which shows that some theorems for connected

functions cannot be extended to connected multifunctions. The following

theorem appears in [2].

Theorem A. Iff: X —* Y is a connected function on a space X into the Tx-space

Y and if M is any closed subset of Y, then each component of f~ (M) is closed.

The following example shows that Theorem A is not true for connected

multifunctions.

Example. Let X = [0,1] and let Y be the unit square in the plane with

corners (0, 0), (0, 1), (1, 1), (1, 0). Define F(x) = {(x,y): 0 < y < 1} for

0 < x < 1 and set F(l) = {(1, 1)}. If M = [±, 1] x [0, ±], then

F~X(M) = [\,\), which is connected but not closed.
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There are a number of ways of extending the condition used by Long in [2].

Here we give the one that is useful in the result we wish to prove.

Definition. Let F: X -> Y and y G Y. Then x0 E T(F,y) if and only if for

each open set V C Y with y G V and each open set U with x0 E U, there

exists an x E U such that F(x) n V # 0.

In [2] Long obtained a characterization of continuity in terms of the set

T(f,y) for first countable spaces where/is single valued. We give an analogous

characterization of upper semicontinuous multifunctions without assuming

that X and Y are first countable. Note also that in Theorem 1 below the range

space is assumed to be regular. In order to have unique convergence Long

should have assumed that Y was T2 in the first part of Theorem 3.4 of [2].

Theorem 1. Let F: X —» Y be a point closed multifunction into the regular

space Y. If F is u.s.c, then x0 G T(F,y) implies that y E F(x0). Moreover, if Y

is compact and if x0 G T(F,y) implies that y E F(x0), then F is u.s.c.

Proof. Suppose that Fis u.s.c. and that y & F(x0). Then there are disjoint

open sets Vx, V2 with>> G If and F(x0) C V2. Further, since Fis u.s.ç., there is

an open set U, with x0 E U, such that F(U) C V2. Therefore ii x EU,

F(x) fl Vx = 0 and, hence, x & T(F,y).

On the other hand suppose that Y is compact and that x0 E T(F,y) implies

that ,y G F(x0). Now let F be an open set such that F(x0) C V, and suppose

that for each open set U containing x0 there is an x E U such that F(x) Ç V.

Then there is a net {xa ; a G D) which converges to x0 and such that there is

aya E F(x0)\V for each a. Then some subnet of {ya;a E D} converges to a

point yQ and, consequently, x0 E T(F,y0). But y0 £ F(x0), a contradiction.

Hence, F is u.s.c.

Another property of the sets T(F,y) is

Theorem 2. The sets T(F,y) are closed.

Proof. If x £ T(F,y), then there are open sets U, V with x E U and

y E V such that F(U) n V = 0. But then U n T(F,y) = 0. Thus T(F,y)

is closed.

We now give our main result.

Theorem 3. Let F: X -> Y be a point compact, connected multifunction on the

compact space X into the space Y. If for each connected set M C X and for each

x E M, T(F,y) H M* = {x} for all y G F(x), then F is a connectivity multi-

function.

Proof. Suppose there exists a connected set M c X such that G(M) is not

connected. Then set G(M) = H U K where H, K are nonempty separated

sets in JÍXK Now {x} X F(x) is compact and connected. Thus if x

E G~[(H), then {x} X F(x) C H, and therefore {x} X F(x) n K* = 0. Next

let A = G~l(H) and B = G~l(K). We shall show that if x G A, then F(x)

does not contain a limit point of F(B). For this let x0 E A. Then by the above
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and the Wallace Theorem [1, Theorem 12, p. 142] there exist open sets U, V

such that x0 G U, F(x0) c V and U x V n K* = 0. Note if x E U í) B

and .y E F(x), then j? K Now suppose some y0 E F(x0) is a limit point of

F(B). Then there is a net ya in F(7?) n K which converges to y0. For each a

let ¿>a E B be such that^a E F(ba). From the above ¿>a £ £/, and since A"\t7

is compact, the net ba has a subnet which converges to a point x, in X \U. But

then x, E T(F,y0) n M* which contradicts the hypothesis since x0 E

T(F,y<¿) n M and x, ^ x0. Therefore no element of F (/4) is a limit point of

F(B) and a dual argument shows that no point of F(B) is a limit point of

F (A). Note that

F(M) = FL4 U5) = FL4) U F(5) = F(A) U [F(75)\F(/1)]

= [F(¿)\F(2í)] U F(B).

Then if F(^4) # F(7?) we have a separation of F(M) which contradicts the

hypothesis that F is connected. Finally, since M is connected, A and 75 are not

separated. Suppose x E A n 5* ; then, as above, by the Wallace Theorem

there are open sets U, V with x E U, F(x) C K. Also U n 5 # 0, and if

x' E {/ n 2?, F(x) # F(x'). Consequently, F(M) is nondegenerate. Hence, if

F(A) = F(5) = F(M), F(M) = (F(A)\{y}) U {y} is a separation of F(M)

for any _y E F(7i). Thus G(M) is connected and hence, F is a connectivity

multifunction.

The following corollary follows immediately from Theorem 3 and general-

izes Theorem 3.6 of [2].

Corollary. Let f. X —* Y be a connected function on a compact space X into

a space Y. If for each connected subset M C X and any x E M, T(fJ(x))

fi M    = {x}, then f is a connectivity map.
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