
PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 64, Number 1, May 1977

NONMETRIZABLE HEREDITARILY LINDELÖF SPACES

WITH POINT-COUNTABLE BASES FROM CH

ERIC K. VAN DOUWEN, FRANKLIN D. TALL1 AND WILLIAM A. R. WEISS2

Abstract. A nonmetrizable hereditarily Lindelöf space with a point-count-

able base is obtained by using the continuum hypothesis to construct a

Lusin subspace of a countable chain condition first countable nonseparable

Baire space.

There has lately been much interest in the relationship between hereditary

Lindelöfness and hereditary separability within the class of regular spaces.

See e.g. [Ru2]. We shall assume all spaces regular. The question is whether

either property entails the other, possibly with other conditions on the spaces,

possibly with the assumption of various consistent set-theoretic axioms. A

rule of thumb which has emerged from recent investigations is the kinds of

counterexamples constructed from a Souslin line can also be obtained from

the assumption of the continuum hypothesis (henceforth called CH). For

example, a Souslin line is hereditarily Lindelöf nonseparable, while such

spaces were later obtained using CH [HJ]. Similarly, hereditarily separable

non-Lindelöf spaces were first constructed from a Souslin line [RUj], then

from CH [HJ]. We provide another confirmation of this rule by using CH to

construct a hereditarily Lindelöf space with a point-countable base which is

not metrizable (and hence not separable). Such spaces were obtained from

Souslin lines in [P] and [B]. See [Tt] for further background.

Our construction may be outlined as follows. A Lusin space is an uncount-

able space such that every nowhere dense set is countable. We observe that

dense Lusin subspaces of (first countable) countable chain condition nonsep-

arable spaces are (first countable) hereditarily Lindelöf nonseparable. As in

[Tj], a first countable example may be converted into one with a point-count-

able base. By examining the classical proof (see e.g. [Ku]) that CH entails the

existence of Lusin subspaces of the real line, we see that such subspaces exist

in countable chain condition (henceforth CCC) first countable spaces without

isolated points satisfying the Baire category theorem. The proof is completed
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by exhibiting a nonseparable example of the latter type of space.

First we consider Lusin spaces.

Definition. A space is Baire if no nonempty open set is the union of

countably many nowhere dense sets.

Definition. tt(X) is the least cardinal of a collection (called a it-base) of

nonempty open sets such that every nonempty open set includes one. c(X) is

the sup of cardinals of collections of disjoint open subsets of A".

Theorem 1. Assume CH. If X is uncountable CCC Baire without isolated

points and ir(X) < 2"°, X includes a dense Lusin subspace.

Corollary. Assume CH. Every uncountable CCC first countable Baire

space without isolated points includes a dense Lusin subspace.

Proof. The Corollary follows since CCC first countable spaces have

cardinality and hence weight < 2"° [J]. To prove the theorem, first observe

that every nowhere dense subset of X is included in the complement of the

union of a maximal disjoint collection of elements of the 77-base. Each such

complement is nowhere dense and there are < (2K°)K° = 2"° of them, say

{F„\n^,,. If we can construct a dense uncountable Y C X with countable
^     at J ot <^ü) j —

intersection with each Fa, we are done. Let {Pa}a<u¡ be a 77-base for X.

Suppose for each ß < a < w,, a yß has been chosen in Pß — Uy<ßFy. Pick

ya e Pa - I U FB u {yß:ß < «})•

Then {ya}tt<u¡ is dense Lusin.

Note that this argument does not require the 7>a's to be distinct and thus

encompasses the case when X is the real line. If X is CCC nonseparable, the

isolated points clause can be dropped if the Lusin set is not required to be

dense. As the theorem stands, the isolated points clause is necessary:

Example. A locally compact first countable Hausdorff space with a count-

able dense set of isolated points and no Lusin subspace.

Let X consist of the real line plus those points in the upper half plane with

both coordinates rational. The rational points are isolated. For each point on

the line choose a fixed sequence of rational points converging to it and let

neighbourhoods of the point be tails of the sequence.

(We have recently learned that Theorem 1 and other interesting results

concerning Lusin spaces were announced in [AS]. White [Wh] was the first to

note Lusin subspaces yielded hereditarily Lindelöf spaces.)

It is perhaps of interest that a variation of the conclusion of Theorem 1 is

actually equivalent to CH.

Theorem 2. CH iff every uncountable CCC Baire space of ir-weight < 2K°

without isolated points has a Lusin subspace of power 2"°.

Proof. Assuming the right-hand side, both the real line with the usual

topology and the real line with the density topology [T3] have Lusin subspaces
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of power continuum. In the latter topology, a Lusin subspace is a Sierpinski

set, i.e. a set of reals such that every subset of measure zero is countable. By

[R], the simultaneous existence of a Lusin subspace of the reals and a

Sierpinski set of reals, at least one of power continuum, implies CH.

Now to construct the required Baire space.

Theorem 3. There exists a first countable zero-dimensional CCC Baire space

in which no nonempty open subset is separable.

Construction. The example is the space DC of all nonempty compact

nowhere dense subsets of R (the real line), equipped with the Pixley-Roy

topology (defined below). This topology for a space of subsets is studied in

[vD,] and is motivated by an example of Pixley and Roy [PR]. Because

points, or subsets, of DC are subsets, or families of subsets of R, they are

denoted by Roman capitals, or script capitals, respectively; families of subsets

of DC are denoted by German capitals.

For any subsets F and G of R we define a subset [F, G] of DC by

[F, G] = {K G DC: F C K ç G).

The Pixley-Roy topology on DC is defined by taking for each K E DC, all sets

of the form [K, U], where U is a neighbourhood of K in R, to be a

neighbourhood base for K in DC. Since each A' G Of is a compact subset of R,

it is easily verified that DC is first countable. It is also easy to verify that each

set of the form [F, G] is closed in DC. Since {K} = [K, K] for K G DC, it

follows that DC is a zero-dimensional T^-space.

Recall that a family of sets is centered if each finite subfamily has non-

empty intersection. We call a family a-centered if it is the union of countably

many centered subfamilies. In order to show that DC is a CCC space, we

prove the stronger result that DC has a a-centered base. In [vD2] it is shown

that this is equivalent to ¿>DC being separable for some (equivalently: for

every) Hausdorff compactification 6 DC of DC. Let % be any countable base

for R such that V u W E % for any V,W E %. Then for each compact

K C R and each neighbourhood U of A' in R there is a w/ G % such that

K C W Ç U. So, if we define for each W E % a collection g( W) by

&(W) = {[K, W\. K E DC and A: C W),

then the family g = u {©( W): W E %} is a base for DC. But E is a-centered

since i/n V E &(W) whenever U, V G &(W), and 0 G Œ(W), for each

W E <¥.

In order to prove that DC is a Baire space, it suffices to show that DC

satisfies the following "completeness condition", which resembles Cech com-

pleteness:

There is a sequence {33„: n < u) of families of (closed) subsets of DC

satisfying:

(1) for each n < u, for each A" G DC and for each neighbourhood % of A"

in DC, there is a <S G 33„ such that K C inte'S and % C %; and
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(2) if 21 C u {33„: n < to} is any centered family such that 21 n 33„ =£ 0 for

each n < to, then n 21 =£ 0.

If {Bn: n < to) is any base for R, then we define the families 33 „ by

33„ = [[K, F]: K E %, F Ç R is compact, K Ç IntRF, B„ - F ^ 0}.

Then (1) is an immediate consequence of the fact that each member of % is a

compact nowhere dense subset of R. Next let 2Í = {[K¡, F¡\: i E 7} be any

centered subfamily of u {33„: n < to} such that 2t n 33 „ ¥= 0 for each n < to.

Define F = n {7v: / E 7}. Then for each n < to we have that Bn - F ^ 0

since 21 n 33„ ̂  0. Therefore F is a nowhere dense subset of R which clearly

is compact. Next we observe that for any i,j E 7 we have that 7C, C F, since

0 *[*;, Ft] n[Kj, Fj] = [#, u Kj, f> n f,].

Therefore K¡ ç F for all / E 7. But this shows that F ^ 0, hence F G %,

and also that K¡ C F <Z F¡ for all /' E 7, so F E n 21.

We now show that no nonempty open subset of % is separable. Let K be

any member of "X, let U be any open subset of R which contains K, and let

^ be a dense subset of [K, U]. For each x E U the set K u {x} belongs to

%, hence 7Cu{x}ÇT)Çi7for some D E UD. Therefore Í7 = u °D. Since

each member of ^ is nowhere dense, it follows that <3) is not countable.

It is of interest to note that % is submetrizable (i.e. % has a weaker

metrizable topology). Indeed, let <B be the family consisting of all sets of the

form {K E %: K n U i= 0} or {K E %: K Ç U), where U is open in R.

Each member of © is open in %, but @ is a subbase for the Vietoris topology

on %. This topology is second countable and hence metrizable [M]. It follows

that % has a Gs -diagonal and a countable separating open cover. Hodel [H]

has shown that a regular quasi-complete CCC Baire space X is separable

provided it has a GÄ-diagonal or a point-countable separating open cover and

notes that the requirement that X be Baire is necessary. % establishes that

quasi-completeness is also essential.

% is in fact cometrizable [AP]. This observation is used in [T4] to construct,

assuming Martin's Axiom plus not CH, a dense Baire normal noncollection-

wise Hausdorff subspace of % having caliber X,.

We now have a CCC nonseparable first countable O-dimensional Baire

space 9C without isolated points. Let £ be a dense Lusin subspace of %.

Then £ is CCC nonseparable. It is easily verified that CCC spaces in which

nowhere dense sets are Lindelöf are hereditarily Lindelöf. As in [T,], take

z = {za}a<av za & {zß■ ß < «}• Take a neighbourhood base {UaJ}i<u for

za such that for each a and each i, UaJ n {Zßi ß < a) = 0. Then {(7a ¡:

a < co,, /' < to} is a point-countable base for Z, which thus is the desired

nonmetrizable O-dimensional hereditarily Lindelöf space with a point-count-

able base.

Z also has a Gs-diagonal. The example in [T,] does not have a Gs-diagonal
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because it is linearly orderable, and a linearly orderable space with a

Gä-diagonal is metrizable [L].

It should be remarked that it was the requirement that our space be first

countable that occasioned some effort to find an example. We can give a

quick proof from CH of the existence of a hereditarily Lindelöf O-dimensional

nonseparable space by constructing a Lusin subspace of {/ G 2"': f(a) = 0

except for countably many a). The latter space (with the subspace topology

inherited from the product) is easily seen to be CCC, nonseparable, O-dimen-

sional, Baire, and to have w-weight K,. See e.g. [T2]. Other spaces that are

CCC, nonseparable, Baire, and have w-weight < 2"° are, for example, the

density topology and the Stone space of the reduced measure algebra.

We take this opportunity to mention a couple of results that, if observed

earlier, would have appeared in [T,].

Theorem 3. // there is a countably compact perfectly normal space which is

not hereditarily separable, then there is a nonmetrizable hereditarily Lindelöf

space with a point-countable base.

Proof. Countably compact perfectly normal spaces are first countable, and

by [St] have no uncountable discrete subspace. Apply Theorem 2 of [Tj].

Theorem 4. // there is a nonmetrizable hereditarily Lindelöf space with a

point-countable base, there is a O-dimensional one. If there is a nonseparable

hereditarily Lindelöf space, there is a O-dimensional one.

Proof. If CH, our example will do. If not CH, any completely regular

space of cardinality N, is O-dimensional. It is easy to see that if either of the

spaces mentioned in the hypotheses of the theorem exists, then it has a

subspace of power N, with the same properties.

Jensen [DJ] has constructed a model of set theory in which there are no

Souslin lines, but CH holds. In this model there is a nonmetrizable heredit-

arily Lindelöf space with a point-countable base, but there is none which is

linearly ordered.

Under the assumption of Martin's Axiom plus not CH, every countably

compact perfectly normal space is hereditarily separable [W]. It remains open

whether this assumption ensures the metrizability of hereditarily Lindelöf

spaces with point-countable bases. However, after completing this paper, we

learned that Kunen [K] had recently proved

Theorem 5. // Martin's Axiom plus not CH is assumed, there are no CCC

Lusin spaces.

In the light of another observation of Kunen-namely that Souslin lines

have dense Lusin subspaces-the construction of a nonmetrizable hereditarily

Lindelöf space with a point-countable base from a Souslin line can be

regarded as a special case of the method developed in this paper.

Subsequent to our work, Kunen constructed from CH a compact perfectly
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normal nonseparable space. By Theorem 3 this yields another nonmetrizable

hereditarily Lindelöf space with a point-countable base.

Using the new axiom BACH, the second author [Ts] has constructed a

dense Lusin subspace of 2", for regular k < 2*1.

Subspaces of the resulting hereditarily Lindelöf nonseparable space all have

weight either k or < «,.
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