SOME INVARIANT PROPERTIES ON SUMMABILITY DOMAINS

SHEN-YUE KUAN

ABSTRACT. Let A be an infinite matrix. Each $f \in c'_A$ has a representation $f(x) = \alpha \lim_A x + t(Ax) + rx$. The purpose of this short article is to answer the following problems raised by Wilansky. 1. Does α invariantly unique imply α^{\perp} invariant? 2. Does A not-replaceable imply α^{\perp} invariant? 3. Could a function $f \in c'_A$ with α uniquely zero have a matrix representation? 4. Is the set of test functions invariant?

We assume that A is a fixed matrix with convergent columns, i.e. $c_A \supset \varphi$, the finite sequences. Every $f \in c_A'$ has a representation

(1)
$$f(x) = \alpha \lim_{A} x + t(Ax) + rx$$

where
$$t \in l$$
, $r \in c_A^{\beta}$, $t(Ax) = \sum_n t_n (Ax)_n$, $rx = \sum_k r_k x_k$.

The representation (1) is far from unique for f and we say α is unique for A if all representations for f have the same α . It is easy to see that α is unique for one f iff α is unique for all f.

 α is said to be invariantly unique of α is unique for every B with $c_A = c_B$. If α is invariantly unique, and B is any matrix with $c_A = c_B$, and $f \in c_A'$, we write $\alpha_A(f)$, $\alpha_B(f)$ for the values of α when f is expressed in the form (1) with respect to A or B. Put $\alpha_A^{\perp} = \{ f \in c_A'; \ \alpha_A(f) = 0 \}$ and similarly for α_B^{\perp} . If $\alpha_A^{\perp} = \alpha_B^{\perp}$ for every B with $c_A = c_B$, we say α^{\perp} is invariant.

The following problems were raised by Wilansky in [1].

- 1. Does α invariantly unique imply α^{\perp} invariant?
- 2. Does A not-replaceable imply α^{\perp} invariant? (Here we assume A is conversative.)
- 3. Could a function $f \in c'_A$ with α uniquely zero have a matrix representation? I.e. there is a matrix B with $c_A = c_B$, $\lim_B = f$.

It is known that if f has a representation (1) with $\alpha \neq 0$, f has a matrix representation. (See [3, Satz 5.3].) We observe that if α is not invariantly unique, there is a matrix D with $c_D = c_A$ such that f has a representation (1) (in D-form) with $\alpha \neq 0$. The above known result which we have just mentioned tells us that f has a matrix representation. Thus it remains to consider Problem 3 in the case that α is invariantly unique.

Received by the editors August 30, 1976.

AMS (MOS) subject classifications (1970). Primary 40H05, 46A45.

Key words and phrases. Summability, nonreplaceable matrix, test function, matrix representation.

A function $f \in c'_A$ is called a test function if f = 0 on φ and $\alpha = 0$ in some representation of f.

The next problem was raised by Wilansky in [2].

4. Is the set of test functions invariant?

All these problems can be solved by use of the following factorization theorem given in [2].

THEOREM 1. Let A satisfy $c_A \supset \varphi$ and suppose that α is unique for A. Let $c_B \supset c_A$. Then there exist matrices C, D such that (a) B = CA + D, (b) $||C|| < \infty$, and for all $x \in c_A$, $t \in l$, y = Ax we have: (c) $tC \in l$, (d) (CA)x = C(Ax), (e) t(Dx) = (tD)x, (f) t(Cy) = (tC)y.

The next four theorems answer the above four problems respectively.

THEOREM 2. If α is invariantly unique, then α^{\perp} is invariant.

PROOF. Let A, B be two matrices with $c_A = c_B$ and let $f \in \alpha_B^{\perp}$ and so f can be written in the form f(x) = t(Bx) + rx. Then, by Theorem 1,

$$f(x) = t [(CA + D)x] + rx = (tC)(Ax) + [(tD) + r]x.$$

Since $tC \in l$ we have $f \in \alpha_A^{\perp}$. Hence $\alpha_B^{\perp} \subset \alpha_A^{\perp}$. Similarly we can prove $\alpha_A^{\perp} \subset \alpha_B^{\perp}$. Thus we conclude that α^{\perp} is invariant.

THEOREM 3. If A is not-replaceable, then α^{\perp} is invariant.

PROOF. Since the replaceability is an invariant property, then [1, Theorem 2.3] α is invariantly unique. Thus this theorem follows from Theorem 2.

THEOREM 4. Let $f \in c'_B$ with $\alpha_B(f)$ uniquely zero. If α is invariantly unique, then f could not have a matrix representation.

PROOF. Suppose there is a matrix A with $c_B = c_A$ such that $f = \lim_A$. Then, by Theorem 1,

$$\lim_A x = t(Bx) + rx = t\big[(CA + D)x\big] + rx = (tC)(Ax) + \big[tD + r\big]x.$$

But this would imply $0 = \lim_A x + t'(Ax) + r'x$ where t' = -tC, r' = tD + r. This contradicts that α is invariantly unique.

THEOREM 5. The set of test functions is invariant.

PROOF. Let A, B be two matrices with $c_A = c_B$. Let T_A be the set of all test functions with respect to A and similarly for T_B . If $f \in T_B$ we consider the following two cases:

Case 1. α is not unique for A. We can write f in two different representations

$$f(x) = \alpha_1 \lim_A x + t_1(Ax) + r_1 x = \alpha_2 \lim_A x + t_2(Ax) + r_2 x.$$

Let $\lambda = \alpha_2/(\alpha_2 - \alpha_1)$. Then $f = \lambda f + (1 - \lambda)f$ expresses f with $\alpha = 0$.

CASE 2. α is unique for A. Since $f \in T_B$, f can be expressed in the form f(x) = t(Bx) + rx. Then, by Theorem 1,

$$f(x) = t[(CA + D)x] + rx = (tC)(Ax) + [(tD + r)]x$$
 with $tC \in I$.

Thus f always has a representation (1) with $\alpha=0$ with respect to A. Of course f=0 on φ in c_A since $f\in T_B$ and $c_A=c_B$. So $f\in T_A$ and hence $T_B\subset T_A$. Similarly we can prove $T_A\subset T_B$. This completes the proof.

REFERENCES

- 1. M. S. Macphail and A. Wilansky, *Linear functionals and summability invariants*, Canad. Math. Bull. 17 (1974), 233-242. MR 50 #13973.
- 2. A. Wilansky, On the μ property of FK spaces, Comment. Math., Special Volume dedicated to W. Orlicz on the occasion of his 75th birthday, 1978 (to appear).
- 3. K. Zeller, Allegemeine Eigenschaften von Limitierungsverfahren, Math. Z. 53 (1951), 463-487. MR 12, 604.

DEPARTMENT OF MATHEMATICS, NATIONAL CENTRAL UNIVERSITY, CHUNG LI, TAIWAN, REPUBLIC OF CHINA