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SOME INVARIANT PROPERTIES
ON SUMMABILITY DOMAINS

SHEN-YUE KUAN

ABSTRACT. Let 4 be an infinite matrix. Each f € ¢/ has a representation
f(x) =alim, x + t(Ax) + rx. The purpose of this short article is to answer
the following problems raised by Wilansky. 1. Does a invariantly unique
imply a' invariant? 2. Does 4 not-replaceable imply a* invariant? 3.
Could a function f € ¢, with a uniquely zero have a matrix representation?
4. Is the set of test functions invariant?

We assume that A4 is a fixed matrix with convergent columns, i.e. ¢, D ¢,
the finite sequences. Every f € ¢ has a representation

49) f(x)= ali;n x + t(Ax) + rx

where t € I, r € 8, t(Ax) = 2,1,(4x),, rx = 2,1, %.

The representation (1) is far from unique for f and we say a is unique for 4
if all representations for f have the same a. It is easy to see that « is unique
for one f iff a is unique for all f.

a is said to be invariantly unique of « is unique for every B with ¢, = cp. If
a is invariantly unique, and B is any matrix with ¢, = ¢, and f € ¢, we
write a, (f), ag(f) for the values of a when f is expressed in the form (1) with
respect to 4 or B. Put o = {f € ¢}; a,(f) = 0} and similarly for ay. If
a; = ag for every B with ¢, = cp, we say a* is invariant.

The following problems were raised by Wilansky in [1].

1. Does a invariantly unique imply a* invariant?

2. Does A not-replaceable imply a' invariant? (Here we assume A is
conversative.)

3. Could a function f € ¢; with a uniquely zero have a matrix repre-
sentation? L.e. there is a matrix B with ¢, = cg, limg = f.

It is known that if f has a representation (1) with a # 0, f has a matrix
representation. (See [3, Satz 5.3).) We observe that if a is not invariantly

unique, there is a matrix D with c;, = c, such that f has a representation (1)
(in D-form) with a # 0. The above known result which we have just mentioned
tells us that f has a matrix representation. Thus it remains to consider Problem
3 in the case that « is invariantly unique.

Received by the editors August 30, 1976.

AMS (MOS) subject classifications (1970). Primary 40HO5, 46A45.

Key words and phrases. Summability, nonreplaceable matrix, test function, matrix representa-
tion.

© American Mathematical Society 1977

248



SOME INVARIANT PROPERTIES ON SUMMABILITY DOMAINS 249

A function f € ¢ is called a test function if f = 0 on ¢ and a = 0 in some
representaton of f.

The next problem was raised by Wilansky in [2].

4. Is the set of test functions invariant?

All these problems can be solved by use of the following factorization
theorem given in [2].

THEOREM 1. Let A satisfy ¢, O ¢ and suppose that a is unique for A. Let
¢cg D c,. Then there exist matrices C, D such that (a) B = CA + D, (b)
IC|| < oo, and for all x € c,, t € I,y = Ax we have: (c) tC € I, (d) (CA)x
= C(d4x), () t(Dx) = (1D)x, (f) t(Cy) = (1C)y.

The next four theorems answer the above four problems respectively.
THEOREM 2. If a is invariantly unique, then o™ is invariant.

PROOF. Let 4, B be two matrices with ¢, = ¢, and let f € af and so f can
be written in the form f(x) = ¢#(Bx) + rx. Then, by Theorem 1,

f(x) = 1[(CA + D)x] + rx = (tC)(4x) +[(tD) + r]x.
Since tC € | we have f € a . Hence ay C a;. Similarly we can prove
a; C ayz. Thus we conclude that a* is invariant.

THEOREM 3. If A is not-replaceable, then a* is invariant.

PROOF. Since the replaceability is an invariant property, then [1, Theorem
2.3] a is invariantly unique. Thus this theorem follows from Theorem 2.

THEOREM 4. Let f € cp with ag(f) uniquely zero. If a is invariantly unique,
then f could not have a matrix representation.

PROOF. Suppose there is a matrix 4 with ¢, = ¢, such that f = lim ,. Then,
by Theorem 1,

limx = ¢(Bx) + rx = 1[(CA + D)x] + rx = (1C)(Ax) +[1D + r]x.

But this would imply 0 = lim, x + #(4x) + r'x where ' = — tC,r' = tD +
r. This contradicts that a is invariantly unique.

THEOREM 5. The set of test functions is invariant.

PROOF. Let 4, B be two matrices with ¢, = c,. Let T, be the set of all test
functions with respect to 4 and similarly for T. If f € T, we consider the
following two cases:

Cast 1. a is not unique for 4. We can write f in two different repre-
sentations

f(x) = a,lil:'nx + 4 (Ax) + rix = azli:nx + 1, (Ax) + ryx.

LetA = a,/(ay — ;). Then f = Af + (1 — A) f expresses f with a = 0.
CASE 2. a is unique for A. Since f € Ty, f can be expressed in the form
f(x) = t(Bx) + rx. Then, by Theorem 1,
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f(x) =1t[(CA + D)x] + rx = (tC)(Ax) +[(tD + r)]x
with 1C € [.
Thus f always has a representation (1) with a = 0 with respect to 4. Of
course f=0 on ¢ in ¢, since f € Ty and ¢, = c5. So f € T, and hence
Ty C T,. Similarly we can prove T, C T,. This completes the proof.
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