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Abstract. Within a general framework containing multiobjective optimi-

zation, an equivalence between duality properties and alternative conditions

is established for pairs of constrained optimization problems. Sufficient

conditions for a Pareto type duality and a multiobjective strong duality are

obtained.

1. Introduction. In a recent paper, McLinden [2] presented in the case of

scalar optimization a general equivalence between duality and alternative,

which underlies various known specific instances. The present paper extends

McLinden's approach to the case of multiobjective optimization. Moreover,

the multiobjective functions are replaced by a somewhat more general

framework involving "level sets". Concerning the way one can associate to a

given primal multiobjective optimization problem a convenient dual one, the

"conjugate" construction in [4] and [1], extending Fenchel's approach, can be

used. By this means, the main result in [4] (Theorem 2) can be seen to fall

within the general framework presented in this paper.

2. Primal and dual constrained multiobjective optimization problems. Assume

the partially ordered set (P, <), V ¥= 0, represents the multiobjective valua-

tion. The primal problem is defined on the set of "constraints" X, by a primal

family of "level sets" 9C = iXv\v E V) satisfying the condition: Xv c Xv. c

X for v, v' E V, v < v'. The dual problem is defined on the set of

"constraints" Y, by a dual family of "level sets" % = iYv\v E V) satisfying

the dual condition: Yv. c Yv c Y for v, v' E V, v < v'. Denote VP = [v E

V\XC t¿ 0} and VD = [v E V\Yo¥=0}. A first pair of primal and dual

problems, corresponding to the usual multiobjective optimization (see (5)) is

given by:

(1) inf VP = ?,       sup VD = ? .

Denote by WP the set of all minimal elements u in Vp such that « = inf U

for a certain U E Vp, U ¥= 0 and U totally ordered. Similarly, denote by WD

the set of all maximal elements u in VD such that u = sup U for a certain

U E VD, U ¥= 0 and U totally ordered. A second pair of primal and dual

problems, corresponding to Pareto optimization (see (6)) is given by:
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(2) WP = 1,       WD = 1.

In the presence of primal and dual multiobjective functions/: X -* V, g: Y

-* V (cf. [2], [4]), the level sets can be considered given by:

(3) Xc={xEX\f(x)<^v),        Yv = { v G Y\v < g(y)}    for v E V.

In case / satisfies the condition:

(4) VxG*: 3uG V: f(x) <^v

that is, none of the values taken by /is maximal in V, the problems in (1) and

(2) obtain the following usual interpretations.

First, suppose (V, <) is dense and for any v E V with (v, -*] =A [v'

E V\v <=£ v') nonempty, inf(u, —>] exists. Then, (1) is equivalent to

(5) Mf(X) = ?,       supg(y) = ? .

That is, inf Vp (resp. sup VD) exists if and only if inif(X) (resp. supg(y)) exists

and they are equal.

Next, suppose (V, <) is dense and any nonempty, totally ordered, lower

bounded subset in V has an infimum. Then

(6) Pareto inf/(*) = f(X)\Vp C WP,       Pareto supg(F) = WD n VD.

Remark. The level set formulation cannot always be given a representation

under the form of (3). For example, let V = [0,1] X [0,1], take the product

order on V, let X = Y = V and let Xv = [x = (xx,x2) G X\xx + x2 < vx

+ v2) and Y„ = [y = (yx,y2) E Y\vx + v2 < yx + y2] for v = (vx,v2) E V.

3. Equivalent alternative conditions and duality properties. Two alternative

conditions are considered:

(AW) Vp n VD = 0 ("weak alternative"),

(AS) Vp U VD = V ("strong alternative").

The joint condition (AW) and (AS), denoted (A), is called "alternative".

The two corresponding duality properties are:

(DW) \/v E VP,w E VD: non(i/ < w) ("weak duality"),

(DS) Vv E V\VP, w E V\VD: non(w < v) ("strong duality").

The joint property (DW) and (DS), denoted (D), is called "duality".

Suppose the level sets are given by (3). Then (DW) is equivalent to the

condition:

Vx E X,y E Y: non(f(x) <*g(y)).

If supg(y) < inif(X), then (DS) implies equality in that relation.

A general equivalence between these notions of duality and alternative can

be proved, extending [2].

Theorem 1. (A) and (D) are equivalent.
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Proof. (AW) => (DW). Suppose v E VP, w E VD, v < w. Then w E VP,

since v E Vp and v < w. Therefore, w £ VP n VD, contradicting (AW).

(DW) => (AW). Suppose v E VP n VD, then (DW) implies non(o < v),

contradicting the reflexivity of < . (AS) => (DS). Suppose v £ V \ VP, w E

V \ VD, w < v. Then w E V \ VP, since w £ VP, w < v imply u E VP. There-

fore, w £ F \ (Fp u Kß), contradicting (AS). (DS) => (AS). Suppose

c6F\(K,Ur//))1

then (DS) implies non(t> < o), contradicting the reflexivity of <.

We consider now a Pareto type duality property (see Corollary 1):

(dp) Wp n Vp e wD, wD n vD c wP.
The partial order (V, <) is called "chain complete", if and only if each

nonempty, totally ordered, lower or upper bounded subset in V has an

infimum, respectively supremum.

The next result gives a general sufficient condition for (DP).

Theorem 2. Suppose (V, <) is dense and chain complete, and suppose the

following conditions hold:

il)      Vi/ £ Vp: 3w £ VD: w < v   and   Vw E VD: 3v £ Vp: w < v.

Then (A), and therefore (D), implies (DP).

Proof. First we prove the inclusion Wp n VP E WD. Suppose u E Wp

D Vp, and let Vx = [vx £ !£>, < u). Then If ^ 0, due to (7). The family of

nonempty, totally ordered subsets of Vx satisfies Zorn's lemma. Suppose U is

maximal in that family. Then w, = sup U exists and m, < u. Suppose ux

<^u. Then 3u' E V: ux <^= u' <^= u, since (V, <) is dense. Moreover,

u' £ VD. Indeed, w' £ F0, u' <^ u imply t/ E Vx. Let Í/' = U U {«'}•

Then sup U = u, <^= w' E Vx imply Í/ c# U' c F„ Í7' ^= 0, t/' totally

ordered, contradicting the maximality of U. Now u' £ F0 implies m' £ VP

because of (AS). But the relations u' < ^ u, u' E VP contradict u £ WP.

Therefore u = sup U. In order to prove that u E WD, it remains to show that

v E VD, u < v imply v = u. But the situation v £ VD, u < v cannot occur,

since it would imply u £ VD, which, together with the hypothesis liËlf.n

VP E VP, would contradict (AW).

The inclusion WD n VD E Wp follows in a similar way.

Corollary 1. Assume the conditions in Theorem 2 are satisfied and that the

level sets are given by (3). Then (A), and therefore (D), implies

(8) Pareto inff(X) E Pareto supg(F).

Proof. In view of (AS), the relation (see (6)) Pareto inîf(X) = f(X)\VP

implies that Pareto inîf(X) E VD. Further, (A) implies Pareto inif(X)

E WD. Indeed, suppose v E Pareto inif(X). Then 3x £ X: v = f(x) & VP,

and hence v £ VD, by virtue of (AS). Let U = [v). Then U E VD, U # 0, U
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totally ordered and v = sup U. Thus, in order to prove that v E WD, it

remains to show that v' G VD,v < v' imply v' = v. Suppose v <# v'. Then

x E Xv,, since f(x) = v <# v'. Thus v' E Vp. But this together with v' G VD

contradicts (AW). This completes the proof, since Pareto supg(y) = WD

n VD according to (6).

A sufficient condition for a multiobjective strong duality property is now

available.

Corollary 2. Assume the conditions in Corollary 1. Then (A), and therefore

(D), implies that inif(X) < supg(y), whenever both terms exist.

Proof. It results from (8) and the obvious inclusions Pareto inf/(A')

C f(X) and Pareto supg(y) C g(Y).

4. Simplifying the multiobjective valuation. The pairs of primal and dual

multiobjective optimization problems in (1) and (2) are perfectly defined by:

(9) © - «H Otfr.r.x,«)

where (V, <) is the multiobjective valuation, X and Y are respectively the

primal and dual set of "constraints", and finally % = (Xv\v E V) and

ty = (Yv\v G V) are respectively the primal and dual "level set" families. In

view of that fact, we shall in the following identify (9) with the problems in (1)

and (2).

We now give a method of replacing the initial multiobjective optimization

problem 6 = ((V, <),X, Y,%,^) by an equivalent one 6* -■((!{» <*),X, Y,

9C* > % ) which will always satisfy (AS). Moreover, 0^ will satisfy (AW) if and

only if 0 satisfies that condition. The method consists in eliminating from V

those elements which do not participate in the optimization. To this end,

define the pariai order (1£, <„,) by setting V+ = VP U VD and letting <„, be

the restriction of < to V+ . Obviously J£ = 0 if and only if Vv G V: Xv = Yv

= 0 in which case the initial problem itself is trivial. Therefore, we shall

assume V+ # 0. Consider the families of level sets %t = (Xv\v E V¡) and

% = (Yv\v G J£). Obviously

(io) Kp=vp,     KD=vD.

Therefore, the problems in (1) are the same for both 0t and 0 if and only if 0

satisfies

(11) inf Vp,       sup VD G Vp U VD.

Further, due to (10) one obtains

wP n Ii E W+p E ç,       wDn V.EW^E Ç.

Therefore, the problems in (2) are the same for both 0+ and 0 if and only if

WpUWDEVpUVD,        W„EWp,        W>DEWD.
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The latter condition can be simplified as follows.

Theorem 3. Suppose (V, <) is chain complete. Then the problems in (2) are

the same for both &+ and 0 if and only if 0 satisfies

(12) Wp U WD C Vp U VD.

Proof. It suffices to show that (12) implies the inclusions W^p E WP and

t%D E WD. Suppose «„, £ W^p. Then u^ = ini^ (4 with Ut E V^p, U+

# 0 and U+ totally ordered by <+ . Since u^ E W%p E F is a lower bound

of £/„ in (V, <) it follows that u = inf^ U+ exists and «„ < u. If u E WP then

u E Vy follows by (12). Therefore u = «„, and then u+ E Wp. Suppose

u g Wp. But m = inf<i( [4, {4 C V^p = Vp, 14 # 0 and 14 totally ordered

in (F, <). Thus, 3v E I£: y <# m according to the definition of Wp (§2). Then

Vh' £ £4 : f <# u', hence f < «+, since f £ Vp E V+. But v <+ «#, f E I£

= J£¿> imply v = u^, since u^ E W^p. Finally, u+ £ Vp. Now u+ < m imphes

m E I£. But then actually u = inf ̂  L4, since ue(^c^. We can con-

clude that u = u+ . Therefore, v <# u implies v <^ m, , contradicting f = «, .

The inclusion W£D C W¿ is proved in a similar way.

Remark. Suppose that the multiobjective optimization problem G = ((V,

<),X, Y,%,<%) is defined as in (3) by primal /: X -* V and dual g: Y -* F

multiobjective functions obtained by the "conjugate" construction in [4] (see

also [1]). Then ([4, Lemma 1])

(13) VxeX,ye Y:g(y)<fix)

so that 0 satisfies (AW). Moreover, within the construction in [4] the partial

order (V, <) is dense and chain complete and/satisfies (4). Therefore, (5) and

(1) are identical in that context.

Now passing from 0 to 0 „, we get that 0 „ satisfies (A) and therefore (D).

The condition (11) will be necessary and sufficient for (5) to be equivalent to

(1) for ©„. But obviously inff(X) £ VP, while supg(F) £ VP because of

(13). Therefore, (11) is equivalent to

inîf(X) E VD   and   supg(F) £ VD.

Now, the first of these implies inff(X) < supg(F), while the second is

equivalent to supg(F) = maxg(y). It follows that the main result in [4]

(Theorem 2) is tantamount to proving (11).
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