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ON VECTOR STATES AND SEPARABLE C*-ALGEBRAS
JOEL ANDERSON

ABSTRACT. It is proved that the set of states on a separable C*-subalgebra of
the Calkin algebra may be simultaneously extended to a set of equivalent,
orthogonal, pure states on the Calkin algebra.

Let % denote a separable C*-algebra of operators acting on a separable
Hilbert space } and suppose that % contains the identity. In [2] Glimm
proved that the weak*-closure of the set of vector states on ¥ (i.e., states on U
of the form w (A4) = (4x, x), where A € % and x is a unit vector in ¥()
contains the set § (%) of all states on A which annihilate A N K (IC). (K ()
denotes the compact operators acting on JC.) Voiculescu used this result in [3]
in the proof of his noncommutative Weyl-von Neumann theorem. In this note
Voiculescu’s theorem shall be used to obtain a stronger version of Glimm’s
result: There is a sequence {w,} of vector states, induced by an orthonormal set
of vectors in I, such that & (N) is contained in the weak*-closure of {w,}. (It
should be noted that Glimm’s theorem holds without any separability
assumptions so that the theorem to be proved here is stronger only in the
separable case.)

This theorem, together with a theorem from [1], yields a somewhat surpris-
ing corollary: There is a set & consisting of equivalent, orthogonal, pure states
on B (), the bounded linear operators on IC, such that every state in S (%) is a
restriction of a state in &. In particular, if f is any state on a separable
C*-subalgebra of the Calkin algebra, B (3)/H (), then there is a pure state
g on the Calkin algebra which extends f.

To prove the theorem, note that since % is separable, s(%) is weak*-metri-
zable and compact and so contains a countable dense set, say { f,}.

Let p denote the canonical homomorphism of B () onto the Calkin
algebra. Then each state f, determines a state g, on p(¥) such that f, = g, ° p.
Let {m,, 3, x,} denote the G.N.S. representation of p(¥) constructed from
g,- Then 7, is a *-homomorphism of p(¥) into % (¥(,) and f,(4) = g, ° p(4)
= (m, ° p(A)x,, x,) for each 4 in A. Let = denote the representation of p(A)
obtained by taking the direct sum of the =,’s, so that # maps p(%) into
B (Z & I,). By Voiculescu’s theorem, there is a unitary transformation U of
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JC onto I & = @ I, such that 4 — U*(4 & 7 o p(A))U € K(I) for all 4
in A. Write e, = U*x, for n=1,2,.... Then {e,} is an orthonormal
sequence in J and the vector states w, = w,,n = 1,2, ..., have the desired
property. Indeed, if f € S (), choose an infinite subsequence { f,y} of {f,}
which converges to f in the weak*-topology. Fix 4 in %. Then

F(A) = im £,(4) = lim g, * p(4) = lim (m, > (4),,5,)
=1lim(U*(4A © 7 o p(A))Ue,_, =1l A) +lim(Ke_, e ),
1;11( ( 7 o p(4)) Ue, e,y) 1;nw,y( ) 15n( e, e,y)

where K is the compact operator U*(4 @ 7 ° p(4))U — A. Since {e,y} con-
verges weakly to zero and K is compact, | Ke, || — 0 as j — 0. Hence,
f(4) = limjw,y(A) for all 4 in U, as desired.

To prove the corollary, choose a sequence {w,} of vector states induced by
an orthonormal sequence {e,} such that each fin & (%) is the weak*-limit of a
subsequence of the w,’s. Fix a free ultrafilter A on the natural members 9
and define a state g on B (IC) by g(T) = limgw,(T). For each permutation «
of N define a unitary operator U, on } by U,e, = €, 7 =1,2,..., and
define the state g, on B (I() by g,(T) = g(UF TU,) = limqw,,(T). (Adding
vectors if necessary, we may assume that {e,} is a basis for JC.) Then the set
& = {g,: ais a permutation of I} has the desired properties. Indeed, by [I,
Corollary 3] g, and hence each g, is a pure state on B (I() (because {e,} is
an orthonormal sequence). Thus, & consists of equivalent pure states. Fur-
ther, if « and B are permutations of 9U such that g, and g are distinct
elements of &, then there are disjoint subsets o and 7 of 9U such that
a"'(6) €U and B !(r) € AU. If D is defined by De, = ¢, for n € o,
De, = — ¢, for n € 7 and De, = 0 otherwise, then D € B(K), |D|| =1
and g,(D) — gg(D) = 2. Hence, || g, — ggll = 2 and the elements of & are
orthogonal. Finally, if f = limw,_ is a state in & (%), then for some permuta-

%y
tion a of N, a~'({n}, ny,...}) € W and

£a(4) = lim,(4) = lima, (4) = (4)

for A € A. The proof is complete.

Note that the choice of & in the proof above is far from unique. In fact,
there are 2° disjoint sets of states on % (IC) which have the desired properties.
(As usual, ¢ denotes the cardinality of the continuum.) Furthermore, by
altering the proof somewhat, it is possible to choose a set &’ of disjoint (i.e.,
inequivalent) pure states on B (3() such that &'| = & (¥).

As an example, take % to be an isometric isomorphic image of C (0, 1), the
continuous functions on the unit interval, in B (3C). Then A N K (K) = (0}
and & (%) is the entire set of states on . Hence, every state on A (including
integration) extends to a pure state on B (I(C).

In conclusion, it seems worth noting that the fact that states in S (%) extend
to pure states on B (JC) may be proved without recourse to Voiculescu’s
theorem. Indeed, by a theorem of Wils [4], if f € §(X), then f = limgw,
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where QU is a free ultrafilter on the natural numbers and {x, } is a sequence of
unit vectors in JC such that limg(x,, y) = O for all y in IC. Straightforward
arguments using the separabilility of % can then be used to show that
f=lim,0,, where {e,} is an orthonormal sequence in @. The proof is
completed, as before, by invoking Corollary 3 of [1].
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