ON VECTOR STATES AND SEPARABLE C*-ALGEBRAS

JOEL ANDERSON

ABSTRACT. It is proved that the set of states on a separable C^* -subalgebra of the Calkin algebra may be simultaneously extended to a set of equivalent, orthogonal, pure states on the Calkin algebra.

Let $\mathfrak A$ denote a separable C^* -algebra of operators acting on a separable Hilbert space $\mathfrak K$ and suppose that $\mathfrak A$ contains the identity. In [2] Glimm proved that the weak*-closure of the set of vector states on $\mathfrak A$ (i.e., states on $\mathfrak A$ of the form $\omega_x(A)=(Ax,x)$, where $A\in\mathfrak A$ and x is a unit vector in $\mathfrak K$) contains the set $S(\mathfrak A)$ of all states on $\mathfrak A$ which annihilate $\mathfrak A\cap \mathfrak K(\mathfrak K)$. ($\mathfrak K(\mathfrak K)$ denotes the compact operators acting on $\mathfrak K$.) Voiculescu used this result in [3] in the proof of his noncommutative Weyl-von Neumann theorem. In this note Voiculescu's theorem shall be used to obtain a stronger version of Glimm's result: There is a sequence $\{\omega_n\}$ of vector states, induced by an orthonormal set of vectors in $\mathfrak K$, such that $S(\mathfrak A)$ is contained in the weak*-closure of $\{\omega_n\}$. (It should be noted that Glimm's theorem holds without any separability assumptions so that the theorem to be proved here is stronger only in the separable case.)

This theorem, together with a theorem from [1], yields a somewhat surprising corollary: There is a set \mathcal{E} consisting of equivalent, orthogonal, pure states on $\mathfrak{B}(\mathcal{K})$, the bounded linear operators on \mathcal{K} , such that every state in $\mathcal{E}(\mathcal{M})$ is a restriction of a state in \mathcal{E} . In particular, if f is any state on a separable C^* -subalgebra of the Calkin algebra, $\mathfrak{B}(\mathcal{K})/\mathcal{K}(\mathcal{K})$, then there is a pure state g on the Calkin algebra which extends f.

To prove the theorem, note that since $\mathfrak A$ is separable, $s(\mathfrak A)$ is weak*-metrizable and compact and so contains a countable dense set, say $\{f_n\}$.

Let p denote the canonical homomorphism of $\mathfrak{B}(\mathfrak{K})$ onto the Calkin algebra. Then each state f_n determines a state g_n on $p(\mathfrak{A})$ such that $f_n = g_n \circ p$. Let $\{\pi_n, \mathcal{K}_n, x_n\}$ denote the G.N.S. representation of $p(\mathfrak{A})$ constructed from g_n . Then π_n is a *-homomorphism of $p(\mathfrak{A})$ into $\mathfrak{B}(\mathcal{K}_n)$ and $f_n(A) = g_n \circ p(A) = (\pi_n \circ p(A)x_n, x_n)$ for each A in \mathfrak{A} . Let π denote the representation of $p(\mathfrak{A})$ obtained by taking the direct sum of the π_n 's, so that π maps $p(\mathfrak{A})$ into $\mathfrak{B}(\mathfrak{D} \oplus \mathcal{K}_n)$. By Voiculescu's theorem, there is a unitary transformation U of

Received by the editors September 30, 1976.

AMS (MOS) subject classifications (1970). Primary 46L05.

Key words and phrases. C*-algebra, state, pure state, vector state, Calkin algebra.

 \mathfrak{K} onto $\mathfrak{K} \oplus \Sigma \oplus \mathfrak{K}_n$ such that $A - U^*(A \oplus \pi \circ p(A))U \in \mathfrak{K}(\mathfrak{K})$ for all A in \mathfrak{A} . Write $e_n = U^*x_n$ for $n = 1, 2, \ldots$ Then $\{e_n\}$ is an orthonormal sequence in \mathfrak{K} and the vector states $\omega_n = \omega_{e_n}, n = 1, 2, \ldots$, have the desired property. Indeed, if $f \in S(\mathfrak{A})$, choose an infinite subsequence $\{f_n\}$ of $\{f_n\}$ which converges to f in the weak*-topology. Fix A in \mathfrak{A} . Then

$$f(A) = \lim_{j} f_{n_{j}}(A) = \lim_{j} g_{n_{j}} \circ p(A) = \lim_{j} \left(\pi_{n_{j}} \circ p(A) x_{n_{j}}, x_{n_{j}} \right)$$

$$= \lim_{j} \left(U^{*}(A \oplus \pi \circ p(A)) U e_{n_{j}}, e_{n_{j}} \right) = \lim_{j} \omega_{n_{j}}(A) + \lim_{j} \left(K e_{n_{j}}, e_{n_{j}} \right),$$

where K is the compact operator $U^*(A \oplus \pi \circ p(A))U - A$. Since $\{e_{n_j}\}$ converges weakly to zero and K is compact, $||Ke_{n_j}|| \to 0$ as $j \to \infty$. Hence, $f(A) = \lim_{j} \omega_n(A)$ for all A in \mathfrak{A} , as desired.

To prove the corollary, choose a sequence $\{\omega_n\}$ of vector states induced by an orthonormal sequence $\{e_n\}$ such that each f in $S(\mathfrak{A})$ is the weak*-limit of a subsequence of the ω_n 's. Fix a free ultrafilter $\mathfrak U$ on the natural members $\mathfrak N$ and define a state g on $\mathfrak{B}(\mathfrak{K})$ by $g(T) = \lim_{\mathfrak{A}} \omega_n(T)$. For each permutation α of N define a unitary operator U_{α} on \mathcal{K} by $U_{\alpha}e_n=e_{\alpha(n)}, n=1,2,\ldots$, and define the state g_{α} on $\mathfrak{B}(\mathfrak{A})$ by $g_{\alpha}(T) = g(U_{\alpha}^* T U_{\alpha}) = \lim_{\mathfrak{A}} \omega_{\alpha(n)}(T)$. (Adding vectors if necessary, we may assume that $\{e_n\}$ is a basis for \mathfrak{R} .) Then the set $\mathcal{E} = \{g_{\alpha} : \alpha \text{ is a permutation of } \mathfrak{N}\}\$ has the desired properties. Indeed, by [1, Corollary 3] g, and hence each g_{α} , is a pure state on $\mathfrak{B}(\mathfrak{K})$ (because $\{e_n\}$ is an orthonormal sequence). Thus, & consists of equivalent pure states. Further, if α and β are permutations of \mathfrak{N} such that g_{α} and g_{β} are distinct elements of \mathcal{E} , then there are disjoint subsets σ and τ of \mathfrak{N} such that $\alpha^{-1}(\sigma) \in \mathcal{U}$ and $\beta^{-1}(\tau) \in \mathcal{U}$. If D is defined by $De_n = e_n$ for $n \in \sigma$, $De_n = -e_n$ for $n \in \tau$ and $De_n = 0$ otherwise, then $D \in \mathfrak{B}(\mathfrak{K})$, ||D|| = 1and $g_{\alpha}(D) - g_{\beta}(D) = 2$. Hence, $||g_{\alpha} - g_{\beta}|| = 2$ and the elements of δ are orthogonal. Finally, if $f = \lim_{j} \omega_{n_j}$ is a state in $S(\mathfrak{A})$, then for some permutation α of \mathfrak{N} , $\alpha^{-1}(\{n_1, n_2, \dots\}) \in \mathfrak{A}$ and

$$g_{\alpha}(A) = \lim_{\mathfrak{N}} \omega_{\alpha(n)}(A) = \lim_{j} \omega_{n_{j}}(A) = f(A)$$

for $A \in \mathfrak{A}$. The proof is complete.

Note that the choice of \mathcal{E} in the proof above is far from unique. In fact, there are 2^c disjoint sets of states on $\mathfrak{B}(\mathcal{K})$ which have the desired properties. (As usual, c denotes the cardinality of the continuum.) Furthermore, by altering the proof somewhat, it is possible to choose a set \mathcal{E}' of disjoint (i.e., inequivalent) pure states on $\mathfrak{B}(\mathcal{K})$ such that $\mathcal{E}'|_{\mathfrak{A}} = \mathcal{S}(\mathfrak{A})$.

As an example, take $\mathfrak A$ to be an isometric isomorphic image of C(0, 1), the continuous functions on the unit interval, in $\mathfrak B(\mathfrak K)$. Then $\mathfrak A\cap \mathfrak K(\mathfrak K)=\{0\}$ and $\mathfrak S(\mathfrak A)$ is the entire set of states on $\mathfrak A$. Hence, *every* state on $\mathfrak A$ (including integration) extends to a pure state on $\mathfrak B(\mathfrak K)$.

In conclusion, it seems worth noting that the fact that states in $S(\mathfrak{A})$ extend to pure states on $\mathfrak{B}(\mathfrak{K})$ may be proved without recourse to Voiculescu's theorem. Indeed, by a theorem of Wils [4], if $f \in S(\mathfrak{A})$, then $f = \lim_{\mathfrak{A}} \omega_{\mathfrak{K}}$

where $\mathfrak A$ is a free ultrafilter on the natural numbers and $\{x_n\}$ is a sequence of unit vectors in $\mathfrak K$ such that $\lim_{\mathfrak A}(x_n,y)=0$ for all y in $\mathfrak K$. Straightforward arguments using the separabilility of $\mathfrak A$ can then be used to show that $f=\lim_{n}\omega_{e_n}$, where $\{e_n\}$ is an orthonormal sequence in $\mathfrak A$. The proof is completed, as before, by invoking Corollary 3 of [1].

REFERENCES

- 1. J. Anderson, Extreme points in sets of positive linear maps on $\mathfrak{B}(\mathfrak{C})$ (to appear).
- 2. J. Glimm, A Stone-Weierstrass theorem for C*-algebras, Ann. of Math. (2) 72 (1960), 216-244. MR 22 #7005.
- 3. D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), 97-113.
- 4. I. M. Wils, Stone-Cech compactifications and representations of operator algebras, Doctoral dissertation, Catholic Univ. of Nijmegin, Nijmegin, 1968. MR 37 #4637.

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802