THE NORM OF THE SUM OF TWO PROJECTIONS

IVAN VIDAV

Abstract

Let e and $\mathbf{f}, \mathbf{e}+\mathbf{f} \neq 0$, be two projections of a C^{*}-algebra A. J. Duncan and P. J. Taylor have shown that $\|e+f\|=1+\|f\|$. In this paper an algebraic proof of this equality is given.

Let \mathbf{A} be a C^{*}-algebra with unit 1 , and let \mathbf{e} and \mathbf{f} be two projections of \mathbf{A}, not both zero. J. Duncan and P. J. Taylor have shown [2, Theorem 7] that

$$
\begin{equation*}
\|\mathbf{e}+\mathbf{f}\|=1+\|\mathbf{f}\| . \tag{1}
\end{equation*}
$$

Their proof is geometric. It is based upon a formula of Chandler Davis [1], [3] giving a matrix representation of two projections in generic position in a Hilbert space. Here we shall give an algebraic proof of the above equality.

Theorem. The spectrum $\sigma(\mathbf{e}+\mathbf{f})$ of $\mathbf{e}+\mathbf{f}$ is contained, with possible exception of the point $\lambda=0$, in the interval $[1-\|\mathbf{e f}\|, 1+\|\mathbf{e f}\|]$. The point $\lambda=1+$ $\|\mathrm{ef}\|$ belongs to $\sigma(\mathbf{e}+\mathbf{f})$. Hence (1) holds.

Proof. Denote by $\mathbf{r}(\mathrm{ef})$ the spectral radius of ef. From the inequalities ($n>1$)

$$
\| \text { efe }\left\|^{n}=\right\|(\text { efe })^{n}\|=\|(\mathbf{e f})^{n} e\|\leqslant\|(\mathbf{e f})^{n}\|=\|(\text { efe })^{n-1} \mathbf{f}\|\leqslant\| \text { efe } \|^{n-1}
$$

we deduce that $\mathbf{r}(\mathrm{ef})=\|$ efe $\|=\| e f \|^{2}$.
Now, let λ be any complex number $\neq 0,1$. Since

$$
\begin{aligned}
(\lambda-1+\mathbf{e})(\lambda-\mathbf{e}-\mathbf{f})(\lambda-1+\mathbf{f}) & =[(\lambda-1)(\lambda-\mathbf{f})-\mathbf{e f}](\lambda-1+\mathbf{f}) \\
& =\lambda\left[(\lambda-1)^{2}-\mathbf{e f}\right],
\end{aligned}
$$

we have

$$
\left[(\lambda-1)^{2}-\mathbf{e f}\right]^{-1}=\lambda(\lambda-1+\mathbf{f})^{-1}(\lambda-\mathbf{e}-\mathbf{f})^{-1}(\lambda-1+\mathbf{e})^{-1}
$$

Hence

$$
\begin{equation*}
\lambda(\lambda-\mathbf{e}-\mathbf{f})^{-1}=(\lambda-1+\mathbf{f})\left[(\lambda-1)^{2}-\mathbf{e f}\right]^{-1}(\lambda-1+\mathbf{e}) . \tag{2}
\end{equation*}
$$

Because $(\lambda-\mathbf{e})(\lambda-1+\mathbf{e})=\lambda(\lambda-1)$ we get from (2)

$$
\begin{equation*}
\lambda(\lambda-1)^{2}\left[(\lambda-1)^{2}-\mathbf{e f}\right]^{-1}=(\lambda-\mathbf{f})(\lambda-\mathbf{e}-\mathbf{f})^{-1}(\lambda-\mathbf{e}) . \tag{3}
\end{equation*}
$$

It follows that $(\lambda-\mathbf{e}-\mathbf{f})^{-1}$ exists for $\lambda \neq 0,1$ iff $\left[(\lambda-1)^{2}-\mathbf{e f}\right]^{-1}$ exists.

[^0]This implies that the spectrum $\sigma(\mathrm{ef})$ of ef is real and belongs to the interval $[0, r(e f)]=\left[0,\|e f\|^{2}\right]$. Let $\lambda \in \sigma(e+f), \lambda \neq 0$. It follows from (2) that $\lambda-$ $1)^{2} \in \sigma(e f) \in\left[0,\|e f\|^{2}\right]$. Therefore, $1-\|e f\| \leqslant \lambda \leqslant 1+\|e f\|$. Since $\lambda=r(e f)$ $=\|\mathbf{e f}\|^{2} \in \sigma(\mathbf{e f})$, we have $1+\|\mathbf{e f}\| \in \sigma(\mathbf{e}+\mathbf{f})$. Hence, $\|\mathbf{e}+\mathbf{f}\|=1+\|\mathbf{f}\|$. Q.E.D.

Remark 1. Let $\lambda \in \sigma(\mathbf{e}+\mathbf{f}), \lambda \neq 0,1,2$. Since $(\lambda-1)^{2} \in \sigma(\mathbf{e f})$, it follows from (3) that $2-\lambda \in \sigma(\mathbf{e}+\mathbf{f})$. Therefore, the set $\sigma(\mathbf{e}+\mathbf{f}) \cap(1-\|\mathbf{e f}\|, 1+$ $\|e f\|)$ is symmetric with respect to the point $\lambda=1$.

Remark 2. Put $(\lambda-e f)^{-1}=u$ and $(\lambda-e f e)^{-1}=v$. If v exists then $\mathbf{e v}=$ ve. From $(\lambda-\mathbf{e f})(1+e v f)=\lambda-\mathbf{e f}+\mathbf{e}(\lambda-\mathbf{e f e}) \mathbf{v f}=\lambda$ and

$$
(1+e v f)(\lambda-e f)=\lambda-e f+e v(\lambda-e f e) f=\lambda
$$

we have $\lambda \mathbf{u}=1+$ evf. Similarly we get $\lambda \mathbf{v}=1+$ efue. This implies that $\sigma(e f)=\sigma(e f e)$. Further, it follows from (2) and (3) that $(\lambda-e-f)^{-1}$ can be expressed by $\left[(\lambda-1)^{2}-e f e\right]^{-1}$, and vice versa.

Remark 3. If $\|\mathbf{e f}\|<1$, then $\lambda=0$ is an isolated point of $\sigma(\mathbf{e}+\mathbf{f})$ (or possibly $\lambda=0$ belongs to the resolvent set of $e+f)$. In this case the right-hand side of (2) is analytic at $\lambda=0$ with value $(1-f)(1-e f)^{-1}(1-e)$ $=g$ there. Hence, $\lambda^{-1} g$ is the principal part of the resolvent $(\lambda-\mathbf{e}-\mathbf{f})^{-1}$ at $\lambda=0$. The coefficient g is the projection of $\mathbf{e}+\mathbf{f}$ corresponding to the isolated point $\lambda=0$ of $\sigma(e+f)$. If we put $\lambda=2$ in (3) we get $2(1-\mathbf{e f})^{-1}=$ $(2-f)(2-e-f)^{-1}(2-e)$. Hence we have also

$$
\mathbf{g}=2(1-\mathbf{f})(2-\mathbf{e}-\mathbf{f})^{-1}(1-\mathbf{e})
$$

Suppose now that \mathbf{e} and \mathbf{f} are projections acting in a Hilbert space \mathbf{H}. Let $\mathbf{H}_{1}=\mathbf{e H}$ and $\mathbf{H}_{2}=\mathbf{f} \mathbf{H}$ be the corresponding base spaces. Then $\mathbf{g} \xi=\mathbf{0}, \boldsymbol{\xi} \in$ \mathbf{H}, holds if and only if $\mathbf{e} \xi+\mathbf{f} \xi=0$, and $\mathbf{e} \xi+\mathbf{f} \xi=0$ holds if and only if $\mathbf{e} \xi=\mathbf{f} \xi=0$, i.e., $\xi \in \mathbf{H}_{1}^{\perp} \cap \mathbf{H}_{2}^{\perp}$. Hence \mathbf{g} is the projection onto $\mathbf{H}_{1}^{\perp} \cap \mathbf{H}_{2}^{\perp}$. It follows that $2 f(e+f)^{-1} e$ is the projection onto $H_{1} \cap H_{2}$, if $(e+f)^{-1}$ exists.

References

1. Chandler Davis, Separation of two linear subspaces, Acta Sci. Math. Szeged 19 (1958), 172-187. MR 20 \# 5425.
2. J. Duncan and P. J. Taylor, Norm inequalities for C^{*}-algebras, Proc. Royal Soc. Edinburgh 75 (1976), 119-129.
3. P. R. Halmos, Two subspaces, Trans. Amer. Math. Soc. 144 (1969), 381-389. MR 40 \#4746.

Department of Mathematics, University of Ljubljana, Lubbljana, Yugoslavia

[^0]: Received by the editors October 25, 1976 and, in revised form, January 31, 1977. AMS (MOS) subject classifications (1970). Primary 46L05; Secondary 46C05.

