THE NORM OF THE SUM OF TWO PROJECTIONS

IVAN VIDAV

ABSTRACT. Let e and f, $e + f \neq 0$, be two projections of a C*-algebra A. J. Duncan and P. J. Taylor have shown that ||e + f|| = 1 + ||ef||. In this paper an algebraic proof of this equality is given.

Let A be a C*-algebra with unit 1, and let e and f be two projections of A, not both zero. J. Duncan and P. J. Taylor have shown [2, Theorem 7] that (1) $\|\mathbf{e} + \mathbf{f}\| = 1 + \|\mathbf{ef}\|.$

Their proof is geometric. It is based upon a formula of Chandler Davis [1], [3] giving a matrix representation of two projections in generic position in a Hilbert space. Here we shall give an algebraic proof of the above equality.

THEOREM. The spectrum $\sigma(\mathbf{e} + \mathbf{f})$ of $\mathbf{e} + \mathbf{f}$ is contained, with possible exception of the point $\lambda = 0$, in the interval $[1 - \|\mathbf{ef}\|, 1 + \|\mathbf{ef}\|]$. The point $\lambda = 1 + \|\mathbf{ef}\|$ belongs to $\sigma(\mathbf{e} + \mathbf{f})$. Hence (1) holds.

PROOF. Denote by r(ef) the spectral radius of ef. From the inequalities (n > 1)

$$\|\mathbf{efe}\|^{n} = \|(\mathbf{efe})^{n}\| = \|(\mathbf{ef})^{n}e\| \le \|(\mathbf{ef})^{n}\| = \|(\mathbf{efe})^{n-1}\mathbf{f}\| \le \|\mathbf{efe}\|^{n-1}$$

we deduce that $\mathbf{r}(\mathbf{ef}) = \|\mathbf{efe}\| = \|\mathbf{ef}\|^2$.

Now, let λ be any complex number $\neq 0, 1$. Since

$$(\lambda - 1 + \mathbf{e})(\lambda - \mathbf{e} - \mathbf{f})(\lambda - 1 + \mathbf{f}) = [(\lambda - 1)(\lambda - \mathbf{f}) - \mathbf{ef}](\lambda - 1 + \mathbf{f})$$
$$= \lambda [(\lambda - 1)^2 - \mathbf{ef}],$$

we have

$$\left[\left(\lambda-1\right)^2-\mathbf{ef}\right]^{-1}=\lambda(\lambda-1+\mathbf{f})^{-1}(\lambda-\mathbf{e}-\mathbf{f})^{-1}(\lambda-1+\mathbf{e})^{-1}.$$

Hence

(2)
$$\lambda(\lambda - \mathbf{e} - \mathbf{f})^{-1} = (\lambda - 1 + \mathbf{f})[(\lambda - 1)^2 - \mathbf{e}\mathbf{f}]^{-1}(\lambda - 1 + \mathbf{e}).$$

Because $(\lambda - \mathbf{e})(\lambda - 1 + \mathbf{e}) = \lambda(\lambda - 1)$ we get from (2)

(2)
$$10^{21}$$
 10^{21} 10^{21} 10^{21} 10^{21} 10^{21}

(3)
$$\lambda(\lambda-1)^2\lfloor(\lambda-1)^2-\mathbf{ef}\rfloor = (\lambda-\mathbf{f})(\lambda-\mathbf{e}-\mathbf{f})^{-1}(\lambda-\mathbf{e}).$$

It follows that $(\lambda - \mathbf{e} - \mathbf{f})^{-1}$ exists for $\lambda \neq 0$, 1 iff $[(\lambda - 1)^2 - \mathbf{ef}]^{-1}$ exists.

Received by the editors October 25, 1976 and, in revised form, January 31, 1977.

AMS (MOS) subject classifications (1970). Primary 46L05; Secondary 46C05.

C American Mathematical Society 1977

This implies that the spectrum $\sigma(\mathbf{ef})$ of \mathbf{ef} is real and belongs to the interval $[0, \mathbf{r}(\mathbf{ef})] = [0, \|\mathbf{ef}\|^2]$. Let $\lambda \in \sigma(\mathbf{e} + \mathbf{f}), \lambda \neq 0$. It follows from (2) that $(\lambda - 1)^2 \in \sigma(\mathbf{ef}) \in [0, \|\mathbf{ef}\|^2]$. Therefore, $1 - \|\mathbf{ef}\| \leq \lambda \leq 1 + \|\mathbf{ef}\|$. Since $\lambda = \mathbf{r}(\mathbf{ef}) = \|\mathbf{ef}\|^2 \in \sigma(\mathbf{ef})$, we have $1 + \|\mathbf{ef}\| \in \sigma(\mathbf{e} + \mathbf{f})$. Hence, $\|\mathbf{e} + \mathbf{f}\| = 1 + \|\mathbf{ef}\|$. Q.E.D.

REMARK 1. Let $\lambda \in \sigma(\mathbf{e} + \mathbf{f})$, $\lambda \neq 0$, 1, 2. Since $(\lambda - 1)^2 \in \sigma(\mathbf{ef})$, it follows from (3) that $2 - \lambda \in \sigma(\mathbf{e} + \mathbf{f})$. Therefore, the set $\sigma(\mathbf{e} + \mathbf{f}) \cap (1 - \|\mathbf{ef}\|, 1 + \|\mathbf{ef}\|)$ is symmetric with respect to the point $\lambda = 1$.

REMARK 2. Put $(\lambda - \mathbf{ef})^{-1} = \mathbf{u}$ and $(\lambda - \mathbf{efe})^{-1} = \mathbf{v}$. If v exists then $\mathbf{ev} = \mathbf{ve}$. From $(\lambda - \mathbf{ef})(1 + \mathbf{evf}) = \lambda - \mathbf{ef} + \mathbf{e}(\lambda - \mathbf{efe})\mathbf{vf} = \lambda$ and

$$(1 + \mathbf{evf})(\lambda - \mathbf{ef}) = \lambda - \mathbf{ef} + \mathbf{ev}(\lambda - \mathbf{efe})\mathbf{f} = \lambda$$

we have $\lambda \mathbf{u} = 1 + \mathbf{evf}$. Similarly we get $\lambda \mathbf{v} = 1 + \mathbf{efue}$. This implies that $\sigma(\mathbf{ef}) = \sigma(\mathbf{efe})$. Further, it follows from (2) and (3) that $(\lambda - \mathbf{e} - \mathbf{f})^{-1}$ can be expressed by $[(\lambda - 1)^2 - \mathbf{efe}]^{-1}$, and vice versa.

REMARK 3. If $\|\mathbf{ef}\| < 1$, then $\lambda = 0$ is an isolated point of $\sigma(\mathbf{e} + \mathbf{f})$ (or possibly $\lambda = 0$ belongs to the resolvent set of $\mathbf{e} + \mathbf{f}$). In this case the right-hand side of (2) is analytic at $\lambda = 0$ with value $(1 - \mathbf{f})(1 - \mathbf{ef})^{-1}(1 - \mathbf{e})$ = \mathbf{g} there. Hence, $\lambda^{-1}\mathbf{g}$ is the principal part of the resolvent $(\lambda - \mathbf{e} - \mathbf{f})^{-1}$ at $\lambda = 0$. The coefficient \mathbf{g} is the projection of $\mathbf{e} + \mathbf{f}$ corresponding to the isolated point $\lambda = 0$ of $\sigma(\mathbf{e} + \mathbf{f})$. If we put $\lambda = 2$ in (3) we get $2(1 - \mathbf{ef})^{-1} = (2 - \mathbf{f})(2 - \mathbf{e} - \mathbf{f})^{-1}(2 - \mathbf{e})$. Hence we have also

$$g = 2(1 - f)(2 - e - f)^{-1}(1 - e).$$

Suppose now that e and f are projections acting in a Hilbert space H. Let $H_1 = eH$ and $H_2 = fH$ be the corresponding base spaces. Then $g\xi = 0, \xi \in H$, holds if and only if $e\xi + f\xi = 0$, and $e\xi + f\xi = 0$ holds if and only if $e\xi = f\xi = 0$, i.e., $\xi \in H_1^{\perp} \cap H_2^{\perp}$. Hence g is the projection onto $H_1^{\perp} \cap H_2^{\perp}$. It follows that $2f(e + f)^{-1}e$ is the projection onto $H_1 \cap H_2$, if $(e + f)^{-1}$ exists.

References

1. Chandler Davis, Separation of two linear subspaces, Acta Sci. Math. Szeged 19 (1958), 172-187. MR 20 # 5425.

2. J. Duncan and P. J. Taylor, Norm inequalities for C*-algebras, Proc. Royal Soc. Edinburgh 75 (1976), 119–129.

3. P. R. Halmos, Two subspaces, Trans. Amer. Math. Soc. 144 (1969), 381-389. MR 40 #4746.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LJUBLJANA, LJUBLJANA, YUGOSLAVIA