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AN EXAMPLE OF A SPACE WHICH IS COUNTABLY
COMPACT WHOSE SQUARE IS COUNTABLY
PARACOMPACT BUT NOT COUNTABLY COMPACT

LEE PARSONS

ABSTRACT. A subspace P of BN — N is obtained whose square is disjoint
from the graph, G, of a pre-selected homeomorphism f: BN — BN that has
no fixed points. The construction is performed in such a way that, for
X = P U N, all countable subsets of X2 — G will have a limit point in X2
We use the following lemma: If K c (BN)? — G is countably infinite, then

el gvpK — G| = 2°.

We construct the space X using the technique of J. Novak [N]. In the
reference cited, Novak constructs a countably compact space whose square is
not countably compact. Several versions have appeared in the literature. H.
Terasaka’s example [T] is presented in Gillman and Jerison, Rings of
continuous functions [GJ] and in Steen and Seebach, Counterexamples in
topology [SS]. Novak’s example was modified by Frolik in [F]. The latter
version is presented by Engelking in [E], Outline of general topology.

A subspace P of BN — N will be obtained whose square is disjoint from the
graph, G, of a preselected homeomorphism f: SN — BN that has no fixed
point, but has the property that f2 = f. The notation of [GJ] is used,
primarily. The construction will be performed in such a way that all count-
able subsets of X? — G will have a limit point in X2, where X = P U N.
Then X will be countably compact since it is homeomorphic to a closed
subset of X2 — G. Moreover, G N X2 = {(n, f(n)): n € N} is closed in X?
and is an infinite discrete set, so X? is not countably compact. But X2 = (X2
N G) U (X2 — G) is the disjoint union of a countably compact subspace and
a countable, clopen discrete subspace and hence is countably paracompact.

The burden of proof is borne mostly by the following

LemMA. If K  (BN)* — G is countably infinite then Ick gvyK — G| = 27,

PRrOOF. Suppose that K C (BN)? — G is countably infinite. We let 7, and
m, denote the projections onto the first and second factors of subsets of
(BN). If there is a point p € N such that H = K n ({p} X N) is infinite
then |cl H| > |cl(m,H)| = 2°, noting that cl m,H = m,cl H. But |G N ({p} X
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BN)| = 1 so that the lemma holds in this and the analogous case, H-(BN X
{pHhN K.

We may now assume throughout (by choosing an appropriate infinite
subset of K) that

|K n({p) X BN)|V |K n (BN X {(p}] <1
forallp € BN, and 7K is infinite, i=1,2.

If K’ c K is countably infinite and has the property that cl(f[=,[K']]) N
cl(m,[K']) = @, then it is easy to establish that |cl zy2K'| = 2% and that
cligvyK’' N G = @, from which the lemma follows. We now devote our
attention to producing such a subset of K.

Every countably infinite subset of BN has a countably infinite subset whose
topology inherited from BN is discrete. Now, using this fact, choose an
infinite subset K* C K such that «,[ K*] is discrete. Then f[#,[ K*]] is discrete,
since f is a homeomorphism. Apply this same technique again to obtain
K** C K*, countably infinite, such that ,[ K**] is discrete. By assumption
(%), K** has the property that f[,[K**]] and =,[ K**] are infinite, discrete
topological subspaces of BN. Since it is a bit tedious to carry the **’s about,
let us assume without loss of generality that K has the latter property to begin
with.

Now cull K again. Let K be enumerated as {(p,, q;), (P, ¢5), - . . }. Let
iy = 1. Let U, be a neighborhood of g; which misses f(p;) and infinitely
many points of f[7[K]] and whose intersection with 7,[K] is {g;}. Now
suppose i, ..., i, are selected in such a way that f[= [K]] — U}.,U; is
infinite and f(p,) & U?.,U, for j=1,...,n, and U’_,U; N m[K]=
{g,--->4.}) Now choose i,41 so that f(p, ) € f[m[K]] — U} U;. Then
choose U, , , so that, one, it does not contain f(p;),j = 1,...,n + I; two, its
intersection with 7[K] is {g; }; and three,l it misses infinitely many
members of f[m[K]] — U?.,U,. The inductive selection of the sequence
(i), i, . . . y is complete. Denote by K” the subset {(p;, ¢;), (P;y G;), - - - } of
K. Then U2, U, is a neighborhood of m,K” and U2,U; N f[m[K"]] = @.
Thus clgyf[m[K”]] N 7,K” = @. In an exactly analogous manner, we pick
an infinite subset K’ C K” having the property that f[m7,[K]] N cl(7,[K']) =
@. Then it follows that cl f[7,[K']] N cl 7,[K'] = Q.

Note that cl -, K" = m,cl K’, i = 1,2, so that we actually proved:

If K c (BN)? is countably infinite and if {p € BN: (BN X {p}) N K #
@} and {p € BN: ({p} X BN) N K # @} are infinite, then

|{r € BN:3s € BN, (r,5) Ecl K — G }|
=|{s€,BN:3rE,8N,(r,s)EclK—G}|=2‘.

Now, beginning the construction of X, we index the countable subsets of
(BN)? — G in type 2°, {Kg} p<2-- By the lemma, K has a limit point which is
not in G U N2, (ry s,)- Let Py = {ry, 5o} — N. Inductively, suppose P,,
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a < B, are selected so that P, C P, fora < y < B and f[P,] N P, = @ and
|Py| = |a] if @ > wand |P,| <wif @ <w. | U 4p5Py| = U,pla| =B8] <
2°if @ > wand is less than w if @ < w. Consider Kj. Several cases arise:

(1) 3rg such that Ky N ({rg} X BN) is infinite.

(@) rg € f(U,pP,) C BN — N. Let Py = U ,gP,. In this case, P will
be defined so that K; & P hence Kj; need not have a limit point in X2,

(®) rg & fIU 4pPs]. Choose sz € BN — (f[U 4pPr] U N) so that
(rg; sg) Ecl Kg — (G U Kg). Let Py = U ,pP, U ({rg, 55} — N).

(i) We have an analogous case if s, such that Kg N (BN X {sg}) is
infinite.

(iii) If no such points exist, apply the lemma, using a simple cardinality
argument, to obtain a point (rg, sg) so that rg, 55 & f[U ,P,] UN and
(rg, s5) €Ecl Ky — (G U Kp). Let Py = U 5P, U {rg, sp}-

So clearly, |Pg|=|U ,pP,|=1|B| if @ > w and is finite otherwise.
Equally clear is that Py O P, fora < .

CLaM. f[Pg] N Pg=@. Let p € P; and suppose 3¢ € Py such that
f(q) = p. Note the following:

(i) Obviously, the inductive hypothesis guarantees that not both p, ¢ €
U aEﬁP a

(i) If p € U,4P, and g = rg, we have f(rg) = p. So f(p) = rg. But 1,y
was chosen so that rg & f[U ,gP,]-

@ii)) If p € U,4P, and g = s, f(s5) = p, so f(p) = sg and we have a
contradiction as above.

(iv) If p = rg and g = s5, we have f(sg) = rp so that f(rg) = s5. But this
gives (rg, 55) € G, a contradiction.

(v) If p = sg and q = rg, f(rg) = s, again a contradiction.

The claim now follows.

The inductive construction of the example is now complete. Note that P2 is
countably compact.

REMARKS. (1) The example presented here is a partial negative answer to a
question of J. Keesling, whose interest in the problem stems from research
announced in [K] concerning hyperspaces. The question, to which I do not
know the answer, is: If X is normal and countably compact and X? is
countably paracompact, is X2 countably compact? R. G. Woods [Wo] has
shown that CH implies that if X is normal, countably compact, extremally
disconnected and |C*(X)| = 2¢, then X is compact. Thus the present example
is not normal assuming CH.

(2) The example presented here also answers in the negative the following
question of Morita [M]: If X and Y are countably compact and X X Y is an
M-space, is X X Y countably compact? The question had been answered in
the negative by Steiner [S], assuming the continuum hypothesis. An M-space
is the quasi-perfect preimage of a metric space. Note that X2 is an M-space:
It is the free union of a countably compact space and a countably infinite
discrete space. See also [Wa, pp. 188-190].
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(3) An example, due to Frolik, of countably compact spaces X and Y
whose product is pseudocompact but not countably compact is presented by
Ginsburg and Saks in [GS]. Only slight modification is needed to yield a
countably compact space whose square is pseudocompact but not countably
compact. Similar results can be obtained from the example given by Comfort
in [C].
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