AN EXAMPLE OF A SPACE WHICH IS COUNTABLY COMPACT WHOSE SQUARE IS COUNTABLY PARACOMPACT BUT NOT COUNTABLY COMPACT

LEE PARSONS

ABSTRACT. A subspace P of $\beta N-N$ is obtained whose square is disjoint from the graph, G, of a pre-selected homeomorphism $f\colon \beta N\to\beta N$ that has no fixed points. The construction is performed in such a way that, for $X=P\cup N$, all countable subsets of X^2-G will have a limit point in X^2 . We use the following lemma: If $K\subset (\beta N)^2-G$ is countably infinite, then $|\operatorname{cl}_{(\beta N)^2}K-G|=2^c$.

We construct the space X using the technique of J. Novák [N]. In the reference cited, Novák constructs a countably compact space whose square is not countably compact. Several versions have appeared in the literature. H. Terasaka's example [T] is presented in Gillman and Jerison, Rings of continuous functions [GJ] and in Steen and Seebach, Counterexamples in topology [SS]. Novák's example was modified by Frolík in [F]. The latter version is presented by Engelking in [E], Outline of general topology.

A subspace P of $\beta N - N$ will be obtained whose square is disjoint from the graph, G, of a preselected homeomorphism $f: \beta N \to \beta N$ that has no fixed point, but has the property that $f^2 = f$. The notation of [GJ] is used, primarily. The construction will be performed in such a way that all countable subsets of $X^2 - G$ will have a limit point in X^2 , where $X = P \cup N$. Then X will be countably compact since it is homeomorphic to a closed subset of $X^2 - G$. Moreover, $G \cap X^2 = \{(n, f(n)): n \in N\}$ is closed in X^2 and is an infinite discrete set, so X^2 is not countably compact. But $X^2 = (X^2 \cap G) \cup (X^2 - G)$ is the disjoint union of a countably compact subspace and a countable, clopen discrete subspace and hence is countably paracompact.

The burden of proof is borne mostly by the following

LEMMA. If
$$K \subset (\beta N)^2 - G$$
 is countably infinite then $|\operatorname{cl}_{(\beta N)^2} K - G| = 2^{2^{\omega}}$.

PROOF. Suppose that $K \subset (\beta N)^2 - G$ is countably infinite. We let π_1 and π_2 denote the projections onto the first and second factors of subsets of $(\beta N)^2$. If there is a point $p \in N$ such that $H = K \cap (\{p\} \times N)$ is infinite then $|\operatorname{cl} H| \ge |\operatorname{cl}(\pi_2 H)| = 2^c$, noting that $\operatorname{cl} \pi_2 H = \pi_2 \operatorname{cl} H$. But $|G \cap (\{p\} \times N)| = 2^c$.

Presented to the Society, January 23, 1976; received by the editors November 7, 1975. AMS (MOS) subject classifications (1970). Primary 54D20; Secondary 54G20.

Key words and phrases. Countably compact, countably paracompact, extremally disconnected, M-space, pseudocompact.

 $|\beta N\rangle| = 1$ so that the lemma holds in this and the analogous case, H-($\beta N \times \{p\}$) $\cap K$.

We may now assume throughout (by choosing an appropriate infinite subset of K) that

$$|K \cap (\{p\} \times \beta N)| \vee |K \cap (\beta N \times \{p\})| \leq 1$$
for all $p \in \beta N$, and $\pi_i K$ is infinite, $i = 1, 2$.

If $K' \subset K$ is countably infinite and has the property that $\operatorname{cl}(f[\pi_1[K']]) \cap \operatorname{cl}(\pi_2[K']) = \emptyset$, then it is easy to establish that $|\operatorname{cl}_{(\beta N)^2}K'| = 2^{2^{\omega}}$ and that $\operatorname{cl}_{(\beta N)^2}K' \cap G = \emptyset$, from which the lemma follows. We now devote our attention to producing such a subset of K.

Every countably infinite subset of βN has a countably infinite subset whose topology inherited from βN is discrete. Now, using this fact, choose an infinite subset $K^* \subset K$ such that $\pi_1[K^*]$ is discrete. Then $f[\pi_1[K^*]]$ is discrete, since f is a homeomorphism. Apply this same technique again to obtain $K^{**} \subset K^*$, countably infinite, such that $\pi_2[K^{**}]$ is discrete. By assumption (*), K^{**} has the property that $f[\pi_1[K^{**}]]$ and $\pi_2[K^{**}]$ are infinite, discrete topological subspaces of βN . Since it is a bit tedious to carry the **'s about, let us assume without loss of generality that K has the latter property to begin with.

Now cull K again. Let K be enumerated as $\{(p_1, q_1), (p_2, q_2), \dots\}$. Let $i_1 = 1$. Let U_1 be a neighborhood of q_{i_1} which misses $f(p_{i_1})$ and infinitely many points of $f[\pi_1[K]]$ and whose intersection with $\pi_2[K]$ is $\{q_{i_1}\}$. Now suppose i_1, \dots, i_n are selected in such a way that $f[\pi_1[K]] - \bigcup_{i=1}^n U_i$ is infinite and $f(p_{i_j}) \notin \bigcup_{i=1}^n U_n$ for $j = 1, \dots, n$, and $\bigcup_{i=1}^n U_i \cap \pi_2[K] = \{q_{i_1}, \dots, q_{i_n}\}$. Now choose i_{n+1} so that $f(p_{i_{n+1}}) \in f[\pi_1[K]] - \bigcup_{i=1}^n U_i$. Then choose U_{n+1} so that, one, it does not contain $f(p_{i_j}), j = 1, \dots, n+1$; two, its intersection with $\pi_2[K]$ is $\{q_{i_{n+1}}\}$; and three, it misses infinitely many members of $f[\pi_1[K]] - \bigcup_{i=1}^n U_i$. The inductive selection of the sequence $\langle i_1, i_2, \dots \rangle$ is complete. Denote by K'' the subset $\{(p_{i_1}, q_{i_1}), (p_{i_2}, q_{i_2}), \dots \}$ of K. Then $\bigcup_{i=1}^\infty U_i$ is a neighborhood of $\pi_2 K''$ and $\bigcup_{i=1}^\infty U_i \cap f[\pi_1[K'']] = \emptyset$. Thus $\operatorname{cl}_{\beta N} f[\pi_1[K'']] \cap \pi_2 K'' = \emptyset$. In an exactly analogous manner, we pick an infinite subset $K' \subset K''$ having the property that $f[\pi_1[K']] \cap \operatorname{cl}(\pi_2[K']) = \emptyset$. Then it follows that $\operatorname{cl} f[\pi_1[K']] \cap \operatorname{cl} \pi_2[K'] = \emptyset$.

Note that cl $\pi_i K' = \pi_i \text{cl } K'$, i = 1, 2, so that we actually proved:

If $K \subset (\beta N)^2$ is countably infinite and if $\{p \in \beta N : (\beta N \times \{p\}) \cap K \neq \emptyset\}$ and $\{p \in \beta N : (\{p\} \times \beta N) \cap K \neq \emptyset\}$ are infinite, then

$$\left|\left\{r \in \beta N : \exists s \in \beta N, (r, s) \in \operatorname{cl} K - G\right\}\right|$$

=
$$\left|\left\{s \in \beta N : \exists r \in \beta N, (r, s) \in \operatorname{cl} K - G\right\}\right| = 2^{c}.$$

Now, beginning the construction of X, we index the countable subsets of $(\beta N)^2 - G$ in type 2^c , $\{K_{\beta}\}_{{\beta}<2^c}$. By the lemma, K_0 has a limit point which is not in $G \cup N^2$, (r_0, s_0) . Let $P_0 = \{r_0, s_0\} - N$. Inductively, suppose P_{α} ,

 $\alpha < \beta$, are selected so that $P_{\alpha} \subset P_{\gamma}$ for $\alpha < \gamma < \beta$ and $f[P_{\alpha}] \cap P_{\alpha} = \emptyset$ and $|P_{\alpha}| = |\alpha|$ if $\alpha \ge \omega$ and $|P_{\alpha}| < \omega$ if $\alpha < \omega$. $|\bigcup_{\alpha < \beta} P_{\alpha}| = \bigcup_{\alpha < \beta} |\alpha| = |\beta| < 2^{c}$ if $\alpha \ge \omega$ and is less than ω if $\alpha < \omega$. Consider K_{β} . Several cases arise:

- (i) $\exists r_{\beta}$ such that $K_{\beta} \cap (\{r_{\beta}\} \times \beta N)$ is infinite.
- (a) $r_{\beta} \in f(\bigcup_{\alpha < \beta} P_{\alpha}) \subset \beta N N$. Let $P_{\beta} = \bigcup_{\alpha < \beta} P_{\alpha}$. In this case, P will be defined so that $K_{\beta} \not\subset P$ hence K_{β} need not have a limit point in X^2 .
- (b) $r_{\beta} \notin f[\bigcup_{\alpha < \beta} P_{\alpha}]$. Choose $s_{\beta} \in \beta N (f[\bigcup_{\alpha < \beta} P_{\alpha}] \cup N)$ so that $(r_{\beta}, s_{\beta}) \in \operatorname{cl} K_{\beta} (G \cup K_{\beta})$. Let $P_{\beta} = \bigcup_{\alpha < \beta} P_{\alpha} \cup (\{r_{\beta}, s_{\beta}\} N)$.
- (ii) We have an analogous case if $\exists s_{\beta}$ such that $K_{\beta} \cap (\beta N \times \{s_{\beta}\})$ is infinite.
- (iii) If no such points exist, apply the lemma, using a simple cardinality argument, to obtain a point (r_{β}, s_{β}) so that $r_{\beta}, s_{\beta} \not\in f[\bigcup_{\alpha < \beta} P_{\alpha}] \cup N$ and $(r_{\beta}, s_{\beta}) \in \operatorname{cl} K_{\beta} (G \cup K_{\beta})$. Let $P_{\beta} = \bigcup_{\alpha < \beta} P_{\alpha} \cup \{r_{\beta}, s_{\beta}\}$.

So clearly, $|P_{\beta}| = |\bigcup_{\alpha < \beta} P_{\alpha}| = |\beta|$ if $\alpha \ge \omega$ and is finite otherwise. Equally clear is that $P_{\beta} \supset P_{\alpha}$ for $\alpha < \beta$.

CLAIM. $f[P_{\beta}] \cap P_{\beta} = \emptyset$. Let $p \in P_{\beta}$ and suppose $\exists q \in P_{\beta}$ such that f(q) = p. Note the following:

- (i) Obviously, the inductive hypothesis guarantees that not both $p, q \in \bigcup_{\alpha \in \beta} P_{\alpha}$.
- (ii) If $p \in \bigcup_{\alpha < \beta} P_{\alpha}$ and $q = r_{\beta}$, we have $f(r_{\beta}) = p$. So $f(p) = r_{\beta}$. But r_{β} was chosen so that $r_{\beta} \not\in f[\bigcup_{\alpha < \beta} P_{\alpha}]$.
- (iii) If $p \in \bigcup_{\alpha < \beta} P_{\alpha}$ and $q = s_{\beta}$, $f(s_{\beta}) = p$, so $f(p) = s_{\beta}$ and we have a contradiction as above.
- (iv) If $p = r_{\beta}$ and $q = s_{\beta}$, we have $f(s_{\beta}) = r_{\beta}$ so that $f(r_{\beta}) = s_{\beta}$. But this gives $(r_{\beta}, s_{\beta}) \in G$, a contradiction.
- (v) If $p = s_{\beta}$ and $q = r_{\beta}$, $f(r_{\beta}) = s_{\beta}$, again a contradiction. The claim now follows.

The inductive construction of the example is now complete. Note that P^2 is countably compact.

- REMARKS. (1) The example presented here is a partial negative answer to a question of J. Keesling, whose interest in the problem stems from research announced in [K] concerning hyperspaces. The question, to which I do not know the answer, is: If X is normal and countably compact and X^2 is countably paracompact, is X^2 countably compact? R. G. Woods [Wo] has shown that CH implies that if X is normal, countably compact, extremally disconnected and $|C^*(X)| = 2^{\omega}$, then X is compact. Thus the present example is not normal assuming CH.
- (2) The example presented here also answers in the negative the following question of Morita [M]: If X and Y are countably compact and $X \times Y$ is an M-space, is $X \times Y$ countably compact? The question had been answered in the negative by Steiner [S], assuming the continuum hypothesis. An M-space is the quasi-perfect preimage of a metric space. Note that X^2 is an M-space: It is the free union of a countably compact space and a countably infinite discrete space. See also [Wa, pp. 188–190].

(3) An example, due to Frolik, of countably compact spaces X and Y whose product is pseudocompact but not countably compact is presented by Ginsburg and Saks in [GS]. Only slight modification is needed to yield a countably compact space whose square is pseudocompact but not countably compact. Similar results can be obtained from the example given by Comfort in [C].

REFERENCES

- [C] W. W. Comfort, A nonpseudocompact product space whose finite subproducts are pseudocompact, Math. Ann. 170 (1967), 41-44. MR 35 #965.
 - [E] R. Engleking, Outline of general topology, Wiley, New York, 1968. MR 37 #5836.
- [F] Z. Frolik, Generalizations of compact and Lindelöf spaces, Czechoslovak Math. J. 9 (84) (1959), 172-217. MR 21 #3821.
- [GJ] L. Gillman and M. Jerison, rings of continuous functions, Van Nostrand, Princeton, N. J., 1960. MR 22 #6994.
- [GS] J. Ginsberg and V. Saks, Some applications of ultrafilters in topology, Pacific J. Math. 57 (1975), 403-418. MR 52 #1633.
- [K] J. Keesling, Normality and compactness are equivalent in hyperspaces, Bull. Amer. Math. Soc. 76 (1970), 618-619. MR 40 #8019.
- [M] K. Morita, A survey of the theory of M-spaces, General Topology and Appl. 1 (1971), 49-55. MR 44 #3276.
- [N] J. Novak, On the Cartesian product of two compact spaces, Fund. Math. 40 (1953), 106-112. MR 15, 640.
- [S] A. K. Steiner, On the topological completion of M-space products, Proc. Amer. Math. Soc. 29 (1971), 617-620. MR 43 #8051.
- [SS] L. A. Steen and J. A. Seebach, Jr., Counterexamples in topology, Holt, Rinehart and Winston, New York, 1970. MR 42 #1040.
- [T] H. Terasaka, On the Cartesian product of two compact spaces, Osaka J. Math. 4 (1952), 11-15. MR 14, 489.
- [Wa] R. C. Walker, The Stone-Cech compactification, Springer-Verlag, Berlin and New York, 1974. MR 52 #1595.
- [Wo] R. G. Woods, *The structure of small normal F-spaces*, Proc. Auburn Conf. (Auburn Univ., Ala., March, 1976) (to appear).

DEPARTMENT OF MATHEMATICS, ALLEGHENY COLLEGE, MEADVILLE, PENNSYLVANIA 16335