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CLUSTER SETS ON OPEN RIEMANN SURFACES

MIKIO NOMURA

Abstract. Generalizations of theorems of Gross-Iversen type on excep-

tional values are given for analytic mappings on open Riemann surfaces.

The classical, well-known theorems of Picard and Iversen (cf. [2, p. 3])

concerning isolated, essential singularities were extended to those of Häll-

ström and Cartwright (cf. [2, pp. 10, 15]) concerning essential singularities of

capacity zero, respectively. These extensions were furthermore extended to

the theorems of Tsuji and Noshiro (cf. [2, pp. 14, 19]) which are stated as

follows:

Let D be an arbitrary domain, B its boundary, A a compact set of capacity

zero on B and z0 a point of A. Let y(z) be single-valued and meromorphic in

D. CD(<p, z0) and CB_A(<p, z0) denote the full clsuter set of <p(z) at z0 and the

boundary cluster set of y(z) at z0 modulo A, respectively.

(1) Every value of CD(<p, z0) - CB_A((p, z0) is assumed by <p(z) infinitely

often in any neighborhood of z0 except for a possible set of values of capacity

zero.

(2) If a G CD((p, z0) — CB_A(<p, z0) is an exceptional value of <p(z) in a

neighborhood of z0, then either a is an asymptotic value of <p(z) at z0 or there

is a sequence ¿„ G A (n = 1, 2, 3, . . . ) converging to z0 such that a is an

asymptotic value of rjp(z) at each |„.

In this paper, (1) and (2) will be generalized for analytic mappings from

open Riemann surfaces into Riemann surfaces. These generalizations will be

given by Theorem 1 and Theorem 2 .

Let / be an analytic mapping from an open Riemann surface R into a

Riemann surface 5. Let R* and S* denote a metrizable compactification and

an arbitrary compactification of R and S, respectively. X and bdy X mean

the closure and the boundary of a subset X of R* or S* with respect to R* or

S*, respectively. dX means the relative boundary of a subset X of R or S with

respect to R or S.

We write A = R* - R. The full cluster set of / at p E A is defined as

C(f,p) = H r>of(U(P> r) H ^ )> where U(p, r) denotes the ^-neighborhood

of p. For a set E on A, the boundary cluster set of / atp modulo E is defined
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as Cà_E(f,p) = Hr>0Uqemp,r)C(f, q), where W(p, r) = U(p, r) n A -

E - {p}. It is said that a path y(t) (0 < t < 1) in R tends to a connected set

AT (c A), when for any r-neighborhood U(K, r) of K, there is a t(K, r) such

that y(i) c U(K, r) for all t > t(K, r). Henceforth let V(P), V0(P) and

V*(P) denote parametric disks about a point P of R or S.

Theorem 1. Let E be a polar set on A and p a point of E. Let rx > r2

> • • • > rn > . . . , rn -» 0. If E n bdy U(p, r„) = 0 for every n, then every

point of F = C(f,p)n S - CA_E(f,p) is assumed by f infinitely often in any

U E {U(p, /•)}, with a possible exceptional set of capacity zero.

Proof. LetfUnR denote the restriction of / to U n R and n(fUnR, b) the

number of the points of fû\R(b) for each b E S, where each point is counted

with its multiplicity. n(fUnR, b) is lower semicontinuous on 5 and, hence,

Fn = {b E F; n(fUnR, b) < n) (n = 0, 1, 2, . . . ) is relatively closed in the

open set S - Q_£ (/,/?). Suppose that {b G F; n(fUnR, b) < oo} is of posi-

tive capacity. Then there is an TV (0 < N < oo) for which FN_X is of capacity

zero and FN is of positive capacity, where F_, = 0. It is possible to find

some c E FN — FN_X, which is not a branch point, such that for any

V(c), V(c) n FN is of positive capacity.

First consider the case where U(p, r) n (A - E) ¥= 0 for every U(p, r).

Then CA_E(f,p) ^ 0. Choose an open set G ($c) containing C^_E(f,p).

There are V(a¡) (c U) (i = 1, 2, . . . , N) such that f(a¡) = c and V(a,) n

V(af) = 0 (i zfcj), and which are mapped onto a V0(c), satisfying V0(c) n 6"

= 0, by / homeomorphically. There is a U' E {U(p, r)) such that U' c U

and UqeWC(f, q) c G, where W = U' n A - E. For each q E W, there is

a U(q) E {U(q, r)} satisfying f(U(q) n R) C G. Since f(Uq&w(U(q) n

R)) n Fn(c) = 0, (LV^t/Qy) n /?)) nf-](Vn(c)) = 0 and, hence,

/" ' ( vo (0) n W=0. Therefore /" ' ( V0 (c)) n U' n A c F.

Choose a i/(/>, r^.) such that U (p, rN.) c [/' and

i/(p,rN.)nF(fl()= 0 (/= 1,2, .. .,7V). /(i/(p,rr)n/i) contains c,

because c E C(f,p). Since F n bdy U(p, rN.) = 0, it is easy to see that

/_I(F0(c)) n bdy U(p, rN.) is compact in R. Hence f(R n bdy U(p, rN.))

(^c) is relatively closed on V0(c). Thus it is possible to choose some V*(c)

(C VQ(c)) satisfying V^)nf(R n bdy £/(/>, r^)) = 0.

Take a component Z)* (c U(p, rN.)) of /"'(K*(c)). 9/(Z>*) -3K*(c) has

regular points relative to the Dirichlet problem (cf. [1, pp. 42, 50]). Let h be a

continuous function with the property that h is equal to 0 on df(D*) n 3K*(c)

and 0 < h < 1 in 3/(7)*) -3K*(c). Let m be the solution of the Dirichlet

problem in f(D*) with h as its boundary function. Then 0 < u < 1 in/(/_)*)

and lim^.^^w °/o«(a) = 0 at every q G 37)*. Since F is polar, there is a

positive superharmonic function s on R with lim^^a) = oo at every q E E.

Therefore,_for any e > 0, HmD,3a^q(esD.(a) — u ° fD.(a)) > 0 at every q E

(37)*) u (D* n A). It follows from the minimum principle (cf. [1, p. 11]) that

— u ° fD, > 0 in D*. This implies a contradiction.



48 MIKIO NIIMURA

Next consider the case where U(p, r) n (A - E) = 0 for some U(p, r).

Then CA_E = 0. We have a contradiction, as we see easily from the above

proof. Thus the proof of Theorem 1 is complete.

Theorem 2. //, under the hypotheses of Theorem 1, e E F is an exceptional

point of f in some {/* G ( U(p, r)}, then either e is an asymptotic point of fat p

or there is an infinite sequence of connected sets Kn ( c E) converging to p such

that e is the asymptotic point off along a path tending to Kn.

Proof. First consider the case where U(p, r) n (A - E) ^ 0 for every

U(p, r). Take any U" E [U(p, r)} contained in U*. Since n(fu,nR, e) = 0,

it is possible to take U', U(p, rN,) and V*(e) in the proof of Theorem 1 such

that U(p, rN.) c U' n U" and V*(e) n f(R n bdy U(p, rN.)) = 0. Any

component D* (c U(p, rN,)) off~\V*(e)) is not relatively compact in R.

Let gv.(e)(b, e) denote the Green's function for V*(e) with pole at e.

Suppose that f(D*)fie. Then gv+(ey(fD*(a), e) is bounded on D*. As in the

proof of Theorem 1, it follows that - gy^e)(fD»(a), e) > 0 in D*. This is

impossible. Therefore f(D*)$e.

Let w = \p(b) be a local parameter of V*(e), and write \p(V*(e)) = [w; \w\

< 1} (>K<0 = 0) and Wx/n = [w; \w\ < \/n) (n = 1, 2, 3, . . . ). Let {£>„} be

an infinite sequence of components of/-1 ° $~x(WXjn) such that Dn+X c Dn

C D*, and {/?„} an infinite sequence of points pn E Dn. D„ is not relatively

compact in R and f(Dn)3e. For any compact set K' (c /?), there is an N0

such that Dn c R - K' for all « > N0. Furthermore, as in the proof of

Theorem 1, Dn c E. For each n, there is a simple arc A„ joining/>„ to/>„+1 in

£>„ such that/(A„) c ^_I(FF"]/n). Thus the path X = Ua„ tends to a compo-

nent of E n i/(/>, fy.) and has the property that f—>e along X. Since

£ D bdy U(p, rn) = 0 for every n, our assertion is proved.

Next consider the case where U(p, r) n (A - E) = 0 for some t/(p, r).

From the above proof, we see easily that our conclusion holds. Thus the

proof of Theorem 2 is complete.
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