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CLUSTER SETS ON OPEN RIEMANN SURFACES
MIKIO NIIMURA

ABSTRACT. Generalizations of theorems of Gross-Iversen type on excep-
tional values are given for analytic mappings on open Riemann surfaces.

The classical, well-known theorems of Picard and Iversen (cf. [2, p. 3])
concerning isolated, essential singularities were extended to those of Hall-
strom and Cartwright (cf. [2, pp. 10, 15]) concerning essential singularities of
capacity zero, respectively. These extensions were furthermore extended to
the theorems of Tsuji and Noshiro (cf. [2, pp. 14, 19]) which are stated as
follows:

Let D be an arbitrary domain, B its boundary, 4 a compact set of capacity
zero on B and z; a point of 4. Let ¢(z) be single-valued and meromorphic in
D. Cp(9, zo) and Cy_ ,(@, z,) denote the full clsuter set of ¢(z) at z, and the
boundary cluster set of ¢(z) at z, modulo A4, respectively.

(1). Every value of Cp(9, z5) — Cp_ (9, z,) is assumed by @(z) infinitely
often in any neighborhood of z, except for a possible set of values of capacity
zZero.

2) If a € Cp(g, z5) — Cy_4(®, zy) is an exceptional value of @(z) in a
neighborhood of z, then either a is an asymptotic value of ¢(z) at z, or there
is a sequence §, € 4 (n=1,2,3,...) converging to z, such that a is an
asymptotic value of ¢(z) at each §,.

In this paper, (1) and (2) will be generalized for analytic mappings from
open Riemann surfaces into Riemann surfaces. These generalizations will be
given by Theorem 1 and Theorem 2 .

Let f be an analytic mapping from an open Riemann surface R into a
Riemann surface S. Let R* and S* denote a metrizable compactification and
an arbitrary compactification of R and S, respectively. X and bdy X mean
the closure and the boundary of a subset X of R* or $* with respect to R* or
S*, respectively. 0X means the relative boundary of a subset X of R or S with
respect to R or S.

We write A = R* — R. The full cluster set of f at p € A is defined as
C(f,p) = N,5of(U(p,r) N R), where U(p, r) denotes the r-neighborhood
of p. For a set E on A, the boundary cluster set of f at p modulo E is defined
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as Cy_p(£f,2) = N,50U gewrnC ([, q), where W(p,r)=U(p,r)N A —
E — {p}. It s said that a path y(¢) (0 < 7 < 1) in R tends to a connected set
K (c A), when for any r-neighborhood U (K, r) of K, there is a ¢(K, r) such
that y(¢) c U(K, r) for all ¢t > ¢(K, r). Henceforth let V(P), Vo(P) and
V*(P) denote parametric disks about a point P of R or S.

THEOREM 1. Let E be a polar set on A and p a point of E. Let r, > r,
> >r>...,1r,>0If Enbdy U(p,r,) = D for every n, then every
point of F = C(f,p) N S — Cu_g(f, p) is assumed by f infinitely often in any
U € {U(p, r)}, with a possible exceptional set of capacity zero.

PROOF. Let f, r denote the restriction of f to U N R and n(fyz, b) the
number of the points of f;; ! x(b) for each b € S, where each point is counted
with its multiplicity. n(fy &, b) is lower semicontinuous on S and, hence,
F,={b€ F;n(fynr-b) < n} (n=0,1,2,...) is relatively closed in the
open set § — C,_g(f, p). Suppose that {b € F; n(fyz, b) < o0} is of posi-
tive capacity. Then there is an N (0 < N < o) for which F,_, is of capacity
zero and Fy is of positive capacity, where F_, = @. It is possible to find
some ¢ € Fy — Fy_,;, which is not a branch point, such that for any
V(c), V(c) N Fy is of positive capacity.

First consider the case where U(p,r) N (A — E) # @ for every U(p, r).
Then C,_g(f, p) # @. Choose an open set G ($c) containing C,_(f, p).
There are V(a) (C U) (i =1,2,..., N) such that f(a) = ¢ and V(a) N
V(a) = @ (i # j), and which are mapped onto a V(c), satisfying V(c) N G
= @, by f homeomorphically. There is a U’ € {U(p, r)} such that U’ c U
and U ,ewC(f, q) C G, where W = U’ N A — E. For each ¢ € W, there is
a U(q) € {U(g, r))} satisfying f(U(g) N R) C G. Since f(U ,cw(U(9) N
R) N Vy(e) =B, (U,ew(U(g) N R) N f7'(V(c)) = @ and, hence,
F='(Vo(c)) N W = &. Therefore f~'(V,(c)) N U' N AC E.

Choose a U (p, ry.) such that U(p,ry.) C U’ and
U(p,rw)NV(a)=92 (i=12,...,N). f(U(p,ry+) N R) contains c,
because ¢ € C(f, p). Since E N bdy U(p, ry.) = @, it is easy to see that
F7'(Vo(c)) N bdy U(p, ry.) is compact in R. Hence f(R N bdy U(p, rys))
(Po) is relatively closed on ¥, (c). Thus it is possible to choose some V*(c)
(C Vi(c)) satisfying *(c)Nf(R N bdy U(p, ry.)) = 2.

Take a component D* (C U(p, ry.)) of f~}(V*(c)). 3f (D*) — dV*(c) has
regular points relative to the Dirichlet problem (cf. [1, pp. 42, 50]). Let & be a
continuous function with the property that 4 is equal to 0 on 3f (D*) N 3V*(c)
and 0 < A < 1 in of(D*) —3V*(c). Let u be the solution of the Dirichlet
problem in f(D*) with h as its boundary function. Then 0 < u < 1 in f(D*)
and limp.,, . ° fp.(a) = 0 at every ¢ €9D*. Since E is polar, there is a
positive superharmonic function s on R with lim,_, s(a) = oo at every ¢ € E.
Therefore, for any ¢ > 0, limy.,, , (espe(a@) — u © fpu(a)) > 0 at every ¢ €
(aD*) U (D* N A). It follows from the minimum principle (cf. [1, p. 11]) that
— u ° fp. > 0in D*. This implies a contradiction.
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Next consider the case where U(p,r) N (A — E) = & for some U(p, r).
Then C,_, = @. We have a contradiction, as we see easily from the above
proof. Thus the proof of Theorem 1 is complete.

THEOREM 2. If, under the hypotheses of Theorem 1, e € F is an exceptional
point of f in some U* € {U(p, r)}, then either e is an asymptotic point of f at p
or there is an infinite sequence of connected sets K, (C E) converging to p such
that e is the asymptotic point of f along a path tending to K,,.

Proor. First consider the case where U(p, r) N (A — E) # @ for every
U(p, r). Take any U” € {U(p, r)} contained in U*. Since n(fysz,€) =0,
it is possible to take U’, U(p, ry.) and V*(e) in the proof of Theorem 1 such
that U(p,ry.) C U' N U” and V*_(e'j N f(R nbdy U(p, ry.) = 3. Any
component D* (C U(p, ry.)) of f ~'(V*(e)) is not relatively compact in R.

Let gy (b, ) denote the Green’s function for V*(e) with pole at e.
Suppose that f(D*)Pe. Then 8y+e(fp+(a), €) is bounded on D*. As in the
proof of Theorem 1, it follows that — gy..(fp«(a), €) > 0 in D*. This is
impossible. Therefore f(D*)Pe.

Let w = y(b) be a local parameter of V*(e), and write Y(V*(e)) = {w; |w|
<1}((e)=0)and W,,, = {w; |w|<1/n}(n=12,3,...). Let {D,} be
an infinite sequence of components of f~! o y (W, ,) such that D,,, C D,
C D*, and {p,} an infinite sequence of points p, € D,. D, is not relatively
compact in R and f(D,)3e. For any compact set K’ (C R), there is an N,
such that D, C R — K’ for all n > N, Furthermore, as in the proof of
Theorem 1, D, C E. For each n, there is a simple arc A, joining p, to p, ., in
D, such that f(A,) C ¥~ '(W, ;). Thus the path A = UA, tends to a compo-
nent of E N U(p, ry.) and has the property that f— e along A. Since
E nbdy U(p, r,) = @ for every n, our assertion is proved.

Next consider the case where U(p,r) N (A — E) = & for some U(p, r).
From the above proof, we see easily that our conclusion holds. Thus the
proof of Theorem 2 is complete.
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