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FIXED POINT THEOREMS FOR MAPPINGS OF

NONEXPANSIVE TYPE
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Abstract. Constructive fixed point theorems for single-valued and com-

pact-valued nonexpansive mappings, which map a closed convex subset C

of a Banach space X into X and send the boundary of C relative to X into

C, are given. Mappings for which the method of asymptotic center applies

are also considered.

In this note we consider fixed point theorems for mappings /: C -» X of the

following types:

(l)/is single-valued, nonexpansive and/(9C) c C.

(2)/is multivalued, nonexpansive and/(x) c C for x G aC.

(3) f is single-valued and satisfies the condition

lim sup lim sup \\fm (x) - f" (y)\\ < k\im sup ||x - /" (,y)||
m n n

for some k > 0. In the sequel, unless otherwise stated, X denotes a uniformly

convex Banach space, C a closed convex nonempty bounded subset of X and

3C the boundary of C relative to X. If /: C —> X is a mapping such that

/(9C) c C, we define F: C -> C by putting

F(x)=f(x)   iff(x) EC,

= the point where the line segment [x,/(x)] and 3C intersect

if/(x) G C.

If /is a contraction, it is known that/has a fixed point (Assad and Kirk [1]).

If/ is nonexpansive, by considering the contractions

/x(x) = Ax0 + (l -X)f(x),      0<X<\,x0GC,

we get for each À, a fixed point xA of fx, and it follows that ||xx — /(xx)|| —» 0

as X —> 0.

The asymptotic center w.r.t. C of a bounded sequence {x„} in X is the

unique point in C at which the function

r(x) = lim sup ||jc - xj|,       x G C,
n

attains its minimum (Edelstein [2]). r(x) is clearly a convex function. We

begin with the following
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Proposition 1. Suppose that the asymptotic center c w.r.t. C of [xn] is an

interior point of C. Then c is also the asymptotic center of {xn) w.r.t. X.

Proof. If not, let c' be the asymptotic center of [xn) w.r.t. X. Since c is an

interior point of C, the line segment [c, c'] has a non trivial intersection with

C, i.e. there exists 0 < X < 1 such that c, = \c + (1 - X)c' E C. Since r(c')

< r(c), it follows from the convexity of r(x) that t-(c,) < r(c). This con-

tradicts the uniqueness of the asymptotic center.

For nonexpansive mappings existence of fixed points of / was proved by

Kirk [6] under a more general setting. In case /: C ^ C, part (a) of the

following theorem was proved by Edelstein [2].

Theorem 1. Let f: C -» X be a nonexpansive mapping withf(dC) c C.

(a) The asymptotic center of the sequence {x, F(x), F2(x), . . .} w.r.t. C is a

fixed point off.
(b) If xn - f(xn)-*0, then the asymptotic center of {xn} w.r.t. C is a fixed

point off.

Proof. Let c be the asymptotic center of {x, F(x), F2(x), . . . } w.r.t. C

For each 77, consider \\f(c) - F"(x)\\.

Case (i).f(F"-x(x)) E C. Then F"(x) = f(Fn~x(x)) and

(1) \\f(c)-F"(x)\\< \\c-F"-x(x)\\.

Case (ii). f(Fn-\x))£ C. Then F"~x(x) = f(Fn~2(x)) for, otherwise,

F"~x(x) G 3C and hence f(F"~x(x)) E C by hypothesis, a contradiction.

Thus

Fn(x) = XF"-X(x) + (1 -X)f(F"-x(x))

= Xf(F-2(x)) + (\-X)f(F"-x(x))

and

(2) ||/(c) - F"(*)|| < X\\F"~2(x) - c\\ + (\-X)\\F"-x(x) - c\\.

It follows from (1) and (2) that

(3) lim sup \\f(c) - F" (x)\\ < lim sup \\c - F" (x)\\.
n n

If f(c) E C, then f(c) = c by the uniqueness of asymptotic center. Other-

wise/(c) G C and c must be an interior point of C. By Proposition 1, c is also

the asymptotic center of {F"(x)} w.r.t. X, and hence by (1) and the unique-

ness, f(c) = c, contradicting/(c) G C. Hence/(c) G C and/(c) = c.

For part (b), let c be the asymptotic center of {xn} w.r.t. C. Then

||/(c) - xn\\ < \\f(c)-f(xn)\\ + \\f(xn) - xn\\

< ||c - xn\\ + ||/(x„) - x„||.

Taking lim sup we have, lim sup ||/(c) - xn\\ < lim sup||c - xn\\.

The following theorem slightly generalizes Theorem 1 in [9].

Theorem 2. Denote by G(X) the family of compact nonempty subsets of X
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equipped with the Hausdorff metric. If f: C -» G(X) is nonexpansive and

f(x) G C for all x G dC, then f has a fixed point.

Proof. As in [9], there exist sequences {x„) c C and {y„) c X such that

y„ G f(x„), \\x„ — y„\\ -* 0 and all subsequences of {x„} have the same

asymptotic center w.r.t C. Arguing as in [9], there exists p £ f(c) such that

lim sup \\p - x„\\ < lim sup||c - x„||. If/(c) c C, then/? E C and/» = c by

the uniqueness of asymptotic center w.r.t. C; if not, c must be an interior

point and, by Proposition \,p = c. Hence c G f(c).

Theorem 3. Let C be a subset of a Banach space such that every bounded net

in C has an asymptotic center, e.g. a closed convex subset of a reflexive Banach

space. Let 0 be the first uncountable ordinal and xa, a < 0, be a transfinite

sequence in C indexed by ordinals less than 0 such that xy is an asymptotic

center [8] of xv, t; < y, whenever y is a limit ordinal. Define

Rx(xy) = sup{||x7 - xy+„\\:n = 1, 2, . . . },

R2(xy) = lim sup {||xY - xy+B||:n = 1, 2, . . . },

R3(xy) = inf  lim sup{||xY - xy+„\\: n = 1, 2, . . . }

and suppose f: C -» C is a function such that f(xy) = xy+x. If the following

condition is satisfied for some i = 1, 2, 3:

R,(x8) < R¡(xy),       8>y   and   Rt(xy) > Ri(xy+U)   if R,(xy) > 0,

then (i) / has a fixed point if i = 1, (ii) there exists a point x such that

hn\Jn (x) = x if i = 2, and (iii) there exists a point x such that hmj" (x) exists

if i = 3.

Proof. The transfinite sequence of nonnegative real numbers R¡(xy), y < £2

is decreasing and must be eventually constant. There exists a point xy such

that R¡(xy) = Rj(xy+U) and hence R¡(xy) = 0. The conclusion in the theorem

then follow immediately.

The proofs of the following lemmas were given in [10].

Lemma 1. Let {x„} be a bounded sequence in X. For each x G X let

r(x) = lim sup„||x - x„||. Let 8(e) be the modulus of convexity of X.

(i) // r(x) < d, r(y) < d and ||x - >>|| > e, then r((x + y)/2) < d(\ -

8(e/d))(or8(e/d-)ife/d = 2).

(ii) \r(x) - r(y)\ < \\x - y\\ < r(x) + r(y).

Lemma 2. Suppose that in Lemma 1, {x„} is relatively compact and C is a

closed convex subset of X. Then the asymptotic center of {x„} w.r.t. C is the

Chebyshev center of the set of subsequent ial limits of {x„} w.r.t. C.

The following two theorems are slight generalizations and modifications of

Theorems 1 and 2 in Kirk [7] and Theorem 1 in Goebel and Kirk [4]. The first

illustrates the method used in Theorem 3 with /?3(xm2) = 0. Let I be a
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Banach space with 5(1) > 0. X is reflexive (James [5]). Let a > 1 be the

solution of a(\ — 8(1/a)) = 1.

Theorem 4. Let X be defined as above and C a closed convex subset of X.

Let f: C -» C be a mapping satisfying the following condition:

(i) lim sup lim sup \\fm (x) - f" (y)\\ < klim sup ||jc - /" (y)||,
m n n

where 0 < k < a. Then there exists an x with \imnf"(x) = x. If fN is continu-

ous for some N > 0, then x is a fixed point off.

Proof. We can assume 1 < k < a. Choose k', k < k' < a. Define xy for

r < u2 as in Theorem 3. Denotey„ = xnu. For each 77, let

rn(x)=limsup||x-r(yn)||.
m

Thus/n_,(y„) = R3(y„-X) in the notation of Theorem 3. We shall write sn for

r»-iW
If s„ = 0 for some 77, then fi(yn_l)^>yn and it follows from (i) that

f'(y„)->y„- Therefore we assume sn > 0.

Claim.

oo '■0'.)<(*y«h-iO',.-i)-
Since k' > 1, we have r„_](y„) < k's„. For sufficiently large m, we have,

from (i), r„_x(fm(y„)) < k's„. If \\yn - fm(yn)\\ > (k'/a)sn, then by Lemma

1

a contradiction to the definition of yn. Hence we have ||y„ -/m(y„)|| <

(k'/a)sn for sufficiently large m, which implies

rm(y„) < (*'/«K <(*7«K-iU-i)-
From (ii) it follows that r„(yn) < (k'/a)"~xrx(yx).

Since

IIJVh -yn\\ < rn+l(yn+l) + rn+l(yn) < 2rn+x(yn+x)

< 2(k'/a)"rx(yx),

the sequence yn is a Cauchy sequence. Let z denote its limit. It follows from

the inequalities (from Lemma 1)

r„(z) < rn(yn) + \\yn - z\\,

||/'(z)-z|| < 7-n(/'(z)) + rn(z),and

lim sup,r„(/'(z)) < krn(z) (from (i)) that rn(z) -» 0 and/'(z) -> z.

\ffN is continuous for some N, then/(z) = \impfNp+l(z) = z.

Theorem 5. Let K be a nonempty compact convex subset of a Banach space

X. Let f: K -* K be a mapping satisfying

(A) lim sup lim sup ||/m (x) - f" (y)\\ < lim sup ||* - /" (y)||.
m n n
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Then there exists a point x such that \in\J"(x) = x. If fN is continuous for

some N > 0, thenf(x) = x.

Proof. Let M be a subset of K minimal w.r.t. being nonempty, closed,

convex and that for every x G M, every subsequential limit of {/"(x)} is in

M. Such an M exists by a standard argument of Zorn's Lemma. Suppose that

M consists of more than one point. Let x0 e M and let C be the asymptotic

center of {/"(x0)) w.r.t. M. By Lemma 2, C is the Chebyshev center w.r.t. M

of the set D of subsequential limits of {/"(x0)} in M. By hypothesis D c M.

Since M has normal structure [11], C is a proper subset of M. For each

x £ A', let r(x) = lim sup„||x - /"(x0)|| and r, = inf{r(x): x £ M). Then

C = {x £ M: r(x) = rx). If y £ C, then it follows from condition (A) that

lim s\ip¡r(f (y)) < r(y). Let [f":(y)} be a convergent subsequence of

{f(y)} with limit z. By continuity of r, we have

lim supr(f"-(y)) = r(z) < lim supr(/n (y)) < r(y) = rx.
i n

Since z £ M we must have r(z) = /•,, i.e. z G C. This shows that C is a

nonempty closed convex proper subset of M and every subsequential limit of

{/"(*)} is in C for every x £ C, a contradiction to the minimality of Af.

Hence M consists of one point z0. Obviously we have lim/"(z0) = z0. The

last part of the theorem follows from the proof of Theorem 4.

Finally we remark that inequality (i) in Theorem 4 is implied by each of the

following:

(o       ii/'w-/''(7)ii<y*-><ii,    ¡>n, k^\ [3],

(Ü) \\f (x) - f (y)\\ < k\\x - y\\,       i>N    [4],

(in) limsup sup {\\f (x) - f (y)\\ - ||*-.v||} <0    [7].
/'       y£C
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