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A NOTE ON GENERATORS OF SEMIGROUPS

SZE-KAI TSUI

Abstract. The generator T of a norm-continuous semigroup of identity

preserving positive linear mappings on a C*-algebra 31 is characterized as

one that satisfies T(u*u) > u*T{u) + T(u*)u for all unitary elements u in

St.

1. Introduction. Since 1948 the analytical theory of semigroups has made

vigorous progress. In that year K. Yosida and E. Hille (see [2, p. 363])

independently characterized the infinitesimal generators for strongly

continuous semigroups of contractions on a normed linear space as those

densely defined closed linear operators T with ||(À7 — r)~'|| < X-1 for all

X > 0. Later in 1960 G. Lumer and R. S. Phillips [5] found another

description of those generators as those densely defined "dissipative" opera-

tors T with range [/ - T] = X, where X is a semi-inner-product space. If the

semigroup of contractions a(t) is norm-continuous, its infinitesimal generator

becomes just bounded dissipative. In this note we are concerned with the

norm-continuous semigroups of identity preserving positive linear mappings

on a C*-algebra and find a new characterization of their infinitesimal

generators in terms of the C*-algebra ordering. It would be more desirable to

have a description of the generators of strongly continuous semigroups of

positive (or completely positive) linear mappings, and that is currently being

investigated by this author.

Lindblad's recent work [3] on generators of one-parameter semigroups of

completely positive identity preserving linear mappings on a C*-algebra

showed an analogous result. As it is known that "positive" case does not

follow automatically from "completely positive" case, one part of the proof of

Theorem 1 is the same as that used in [3] and the other part is quite different.

2. Preliminary. Let A' be a Banach space, X* its dual space and B (X) the

Banach algebra of all bounded linear operators (or mappings) on X. Given a

linear functional f on X and an element x in X, we define a linear functional

(x,f) on B(X) by (x,f)(T) = f(T(x)) for T in B(X). It is easily seen that (i)

IK*..All < 11*11 11/11. CO («*,/) = a(x,f) for scalar a, (iii) (xx + x2,f) =
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(xx,f) + (X2,f), (ÍV) (X,fx + /j) = (X,fx) + (X,f2).
The spatial numerical range V(T) of a given linear mapping T in B(X) is

defined as

V(T) = {(x,f)(T)\f(x)=\ = \\f\\ = \\x\\}.

Let $ be a unital Banach algebra. Given / in *§> * and x ¡n 65, we define a

linear functional on %  as /..(.y) = /(.y*) for all   y in %  and observe (i)

H/J < 11/11 ||x||, (ii)/« = a/, for scalar «, (in)/Xi+Jtj = /   + fx,
The numerical range V(T, % ) of a given element 71 in <35 is defined as

V(T,%)={f(T)\f(I) = \ = \\f\\},

where / is the identity element in %. It is known that V(T, <$) =

{/^(T^l/C*) = 1 = 11/11 = ||x||}. In the following we list several properties

needed in this note whose proofs can be found in [1] (see Theorem 4, p. 84,

Theorem 4, p. 30, Theorem 4, p. 28 and Theorem 6, p. 30) and [4].

Proposition 1. co V(T) = V(T, %), where co V(T) is the closed convex

hull of V(T). As a consequence V(T, %) is always a closed convex subset in

the complex plane C.

Proposition 2.

Max{Rea;a G V(T, $)}

Proposition 3.

Max{Rea;a G V(T, <&)}

Proposition 4. Let x be in %. Then Re X < 0 for all X in V(x,%) if and

only if || exp(/x) 11 < 1 for all t > 0.

Definition. An element x in $ is said to be dissipative if Re X < 0 for all

X in V(x, % ).

A linear mapping T of a C*-algebra 31 into itself is called selfadjoint if

T(x*) = T(x)* for all x in 21, and is called positive if T(x) is positive for all

positive elements x in 31. It is easy to see that a positive linear mapping is

also selfadjoint.

3. The main theorem. Let e'T be a one-parameter norm-continuous

semigroup of positive linear mappings on a C*-algebra 31 with e'T(l) = 1,

and T its generator (1 is the identity element in 21, and all C*-algebras

considered in this note have identity element). From T(x) = lim,_>0+(e'r(x)

— x)/t (x E 21), we see that T is selfadjoint and T(l) = 0. In the following is

= inf   1 {||/ + «21-1}
a>0    a    v '

=  lim   -f||/ + ar|| - 1)

= sup   -  {log||exp(ar)||}
a>0    a

= lim    I {log||exp(ar)||}.
a—»0        U
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the theorem in which the generator T is characterized by C*-algebra ordering

structure.

Theorem 1. Let T be a bounded self adjoint linear mapping on a C*-algebra

91 with T(l) = 0. The following two conditions are equivalent:

(i) T is dissipative.

(ii) T(u*)u + u* T(u) < Ofor all unitary elements u in 21.

Proof, (ii) =» (i). The argument used here is the same as that in Proposition

4 in [3]. For the sake of completeness we do it as below. Because of

Proposition 2 and a theorem due to Russo and Dye [6], it suffices to show

that

r(T) = lim   sup  -  {||w + tT(u)\\ - 1} < 0,
t—rO*       «        t

where the supremum is taken over all unitary elements in 91.

||u + tT(u)\\2 = ||m*« + u*tT(u) + tT(u*)u + t2T(u*)T(u)\\

< ||i + /27>*)r(«)|| < i + /2||rn2.

Hence, ||/ + /r||2 < 1 + i2||r||2,and

(11/+/r|| - i)(||/+ fr|| + i) </W,

hence,

(||/ + tT\\ - \)/t < /|mi2/(||/ + /r|| + i).

Therefore r(T) < 0.

(i) => (ii). By a theorem due to Russo and Dye [6] we have

\\I+tT\\2 =   sup   ||(/ + /7")(«)||2
w: unitary

in»

= sup ||(« + tT(u))*(u + /r(«))||.
u

Hence, for any state <b on 91 and unitary element u in 91, we have

<j>((u + tT(u))*(u + tT(u))) < ||7 + tT\\2,

<¡>(u*u + t(T(u*)u + u*T(u)) + t2T(u*)T(u)) < ||/ + /r||2,

t<b(T(u*)u + u*T(u)) + t2<b(T(u*)T(u)) < ||/ + ir||2 - 1,

<b(T(u*)u + u*T(u)) + t<j>(T(u*)T(u))

< ((||/ + tT\\ - l)/f)(||/ + tT\\ + 1).

Taking the limit for both sides as t -> 0+ we have

<t>(T(u*)u + u*T(u)) < r(T)-2 < 0

because r(T) < 0. Therefore T(u*)u + u*T(u) < 0.   Q.E.D.

Corollary 1. The generator T of a norm-continuous semigroup of identity

preserving positive linear mappings on a C*-algebra satisfies condition (ii) in

Theorem 1.
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Proof. It is because of Proposition 4 and Theorem 1.    Q.E.D.

Without the assumption T(l) = 0 in the above corollary, condition (ii) can

be replaced by

(ii)' T(l) + u*T(l)u - T(u*)u - u*T(u) > 0, for all unitary u in 2Í.

Define T'(x) = T(x) - \(T(\)x + xT(\)) for all x in 21. Since

T'(u*)u + u*T'(u) = T(u*)u + u*T(u) - u*T(\)u - 771),

condition (ii) holds for 7" if and only if condition (ii)' holds for T. Denote

x^Kx + xK by [K, x) = TK(x). The semigroup generated by TK is

exp tTK(x) = e'Kxe'K. The semigroup generated by T + T" (= T), where

T" = 7,(1/2)7-(i), is given by the Lie-Trotter formula

expi(r + T")= lim   [exp(/r'/ii)exp(/r"//i)]".

Hence exp t(T' + T") is positive if T satisfies (ii)'. Conversely, suppose that

exp tT is positive. Then T is selfadjoint. By the Lie-Trotter formula the

semigroup generated by T - T" (= 7") is positive, and (exp tT')(l) = 1 for

all r > 0. By Corollary 1, condition (ii) holds for T. Therefore condition (ii)'

holds for T. We have concluded

Corollary 2. Let T be a bounded selfadjoint linear mapping from 21 into

itself. Then exp tT is positive for all t > 0 iff condition (ii)' holds for T.
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