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A REMARK ON DIRECTIONAL CONTRACTIONS

W. A. KIRK1 AND WILLIAM O. RAY

Abstract. Let A" be a Banach space and D a convex subset of X. A

mapping T: D -> X is called a directional contraction if there exists a

constant a e (0, 1) such that corresponding to each x, y E D there exists

e - e(*, y) S (0, 1] for which \\T(x + e(y - x)) - T(x)\\ < ae\\x - y\\.

Tests for lipschitzianness are obtained which yield the fact that if a closed

mapping is a directional contraction, then it must be a global contraction,

and sufficient conditions are given under which a nonclosed directional

contraction T: D -> D always has a fixed point.

Let A' be a Banach space and D a convex subset of X. It is a well-known

and easily proved fact that if T: D -* X is locally lipschitzian, in the sense

that for fixed k > 0 each point x of D has a neighborhood Ux such that

||7\jc) - T(v)\\ < k\\x - «|| for each v E Ux, then T is globally lipschitzian

(with constant k). In this note we examine substantially weaker local

conditions which are sufficient to imply the lipschitzian character of

mappings T: D -» X.

Definition. Let D be a convex subset of X. The mapping T: D -» X is

called directionally k-lipschitzian for k > 0 if corresponding to every x, y E D

there exists e = e(x,y) E (0, 1] such that

\\T(x + e(v - x)) - T(x)\\ < ke\\x-y\\.

If k E (0, 1) then T is called a directional contraction.

M. Altaian provided the motivation for this paper when he introduced the

notion of directional contractions in [1] and observed that as a special case of

his more technical results, if F: X -> X is a directional contraction for which

P = / - F is a closed mapping, then P(X) = X. (See [1, §4].) It is a

consequence of our results below that under precisely these assumptions the

mapping F is actually a global contraction (from which surjectivity of P is

well known). Because directional contractions are global contractions under

such mild continuity assumptions, the study of directional contractions as

such would appear to be of little importance, but nonetheless we note in our

closing remarks that the class of directional contractions which are not

contraction mappings is nontrivial and indeed certain mappings of this class

always have fixed points.
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We begin by giving a relatively weak affirmative test for lipschitzianness of

mappings T: D -» X. Recall that such a mapping is closed if for {xn} c D the

conditions xn -» x and T(x„) -»y imply x G D and T(x) = v.

Theorem 1. Let X be a Banach space, D a convex subset of X, and T:

D -» X a closed mapping. Suppose there exists k > 0 such that for each distinct

x,y G D,

\\T(x + ¿(v - x)) - T(x)\\
(1) inf- < k.

{g(o,u t\\x-y\\

Then T is k-lipschitzian on all of D.

Remark. Clearly if T is directionally /c-lipschitzian on D, then T satisfies

CO-
PROOF of Theorem 1. Let x, y G D with x i= y, fix p > k, and let fi,

denote the set of countable ordinals. Suppose for y G fi, and each a < y,

points {/a} c [0, 1] have been defined with t0 = 0 so that, if xa » (1 — ta)x

+ tjf, then:

(a) either ta = 1 for some a < y, or {ta}a<y is strictly increasing;

(b) T restricted to the set [xa: a < y) is/?-lipschitzian.

We define ty as follows: Suppose y = ß + 1. If tß = 1 then define ty = I;

otherwise by (1) (applied to the pair xß, y) there exists x G seg^, v] such

that \\T(x) - T(xB)\\ < p\\x - Xß\\, and since x = (1 — t)xß + ty for some

t G (0, 1], it follows that x = (1 - i)x + ty for t G (f^, 1]. In this case define

ty = t and observe that for a < ß, \\T(xa) — T(xB)\\ < p\\xa — xß\\ and

||7X*,) - T(xy)\\ < /»H^ - xy\\, from which ||r(jca) - T(xy)\\ < p\\xa -

xy\\, i.e., T is /j-lipschitzian on {*a}a<r Now suppose y is a limit ordinal. In

this case define ty = supa<1, ta. To see that T restricted to [xa}a<y is

/7-üpschitzian, observe that for a < ß < y, (b) implies

(2) ||7-(*a)- 7(^)11 < /»Hoc,,-^||;

thus, since hm/3<ï xß = xy it follows that {T(xß)}ß<y is a Cauchy net. By

completeness there exists z G X such that lim T(xB) = z and since T is a

closed mapping, z = T(xy). Taking limits with respect to ß in (2), we obtain

\\T(xa) - T(xy)\\ < p\\xa - xy\\ for all a < y and thus T restricted to

{xa}a<y is also in this case/»-lipschitzian. Therefore the set [ty] c [0, 1] is

defined with conditions (a) and (b) satisfied for all y G fi,. Since [0, 1] does

not contain a discrete uncountable set, (a) implies that ty = 1 for some y G fi,

from which xy = v and

\\T(x) - T(y)\\ =\\T(x,) - T(xy)\\ < p\\x - y\\.

Since/» > k is arbitrary, ||7\;c) - 7Xv)|| < k\\x - y\\, completing the proof.

If the constant k in Theorem 1 is less than 1 then an even stronger result

holds.

Theorem 2. Let X be a Banach space, D a convex subset of X, and T:
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D -* X a mapping which satisfies (1) of Theorem 1 for k E (0, 1). Suppose the

mapping P = I — T satisfies the condition: For each sequence {xn} C D such

that xn -+x0 E D the set [P(x„)) is closed in X. Then T is a contraction

mapping with global Lipschitz constant k on D.

Corollary. With X, D, and T: D -> X as in Theorem 2,ifP = I- T maps

closed sets into closed sets, then T is a contraction mapping on D with Lipschitz

constant k.

Proof of Theorem 2. Letting/» E (k, 1), the proof of this theorem follows

the proof of Theorem 1 except in defining ty for y a limit ordinal. Suppose

{ta} and {xa} satisfying (a) and (b) have been defined for all a < y and let

a„1y as «-> oo. If ta = 1 for some a < y then by (b) || 7"(j«c) — 7Xv)|| <

p\\x - y\\. Otherwise by (a), [ta¡¡}^x is strictly increasing. Define ty = lim„ t^

and suppose m =£■ n. Then

since otherwise

IK - *J-K - T(*J + T(xJ - T(xJ + T(xJ - *J|

= \\T(xJ-T(xJ\\<p\K-xam\\,

which (since p < 1) contradicts x^ =£ x^. Since ||r(jc^) - T(xaJ\\ < p\\x^

— x \\, {^(JCa,,)}".! is a Cauchy sequence and thus T(xaJ -» v0 E X. In

view of (3), for N sufficiently large,

xy- y0^ x^- T(xaJ,       n > N.

But since je   - T(xaJ -»• xy — y0 it follows from our hypothesis on P that

xy - v0 E U {x^ - T(XaJ) u {Xy - T(Xy)}
n = N

from which xy - y0 = xy - T(xy), i.e., y0 = T(xy) and T(xaJ -» T(xy).

Hence for a < y,

\\T(xa)-T(xy)\\=lim\\T(xa)-T(xJ\\

<limp\\xa - jej-/»||jca - Xy\\,

proving T is/7-lipschitzian on [xa}a<y. The proof is now completed exactly as

in Theorem 1.

We conclude with some remarks about directional contractions. The

mapping 7: [0, 1] -> [0, 1] defined by

T(x\ = Í 1    if x is rational,
I 0    if x is irrational,

provides a quick example showing that directional contractions are not

always contractions, hence that some additional assumption is needed for the

validity of Theorem 2. As we shall see later, it is also the case that directional

contractions exist which are not contractions but which satisfy all the
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assumptions of the following theorem. (Of course Theorem 2 precludes the

existence of 'natural' examples of this type.)

Theorem 3. Let D be a closed and convex subset of the Banach space X,

suppose T: D —» D is a directional contraction, and suppose the mapping 17:

D —» R+ defined by tj(x) = ||x — 7\.x)|| is lower semicontinuous. Then T has a

fixed point in D.

Proof. We follow the approach of Caristi [3]. Suppose T has no fixed

point. Then it is possible to define a fixed-point free mapping g: D —» D as

follows: For each x G D use the directional contraction assumption to select

g(x) G seg(x, T(x)] so that for fixed k G (0, 1),

\\T(x) - T(g(x))\\ < k\\x - g(x)\\.

Thus

|*-*(*)|-|*-r«|-|*(*)-r(*)|

<|x - T(x)\\-[\\g(x) - T(g(x))\\ -\\T(g(x)) - T(x)\\]

<\\x - T(x)\\ -\\g(x) - T(g(x))\\ +k\\g(x) - x\\.

From this,

\\x - S("*)|| < 0 - *)_1[lk - *X*)| -||S(*) - T(g(x))\\

= <P(x) - (p(g(x))

with qp: D^> R+ defined by cp(x) «■ (1 — k)~hn(x). Since cp is lower semi-

continuous, Caristi's theorem (see [3], [4], [6]) implies g has a fixed point,

contrary to our initial assumption.

Remarks. 1. The assumption needed in Theorem 3 is actually considerably

weaker than the assumption that T be a directional contraction. One only

need suppose that for each x G D with x i= T(x) there exists z G seg(x,

T(x)] such that \\T(x) - T(z)\\ < k\\x - z\\.

2. For an example of a directional contraction which satisfies the

assumptions of Theorem 3 but which is not a global contraction let C be the

complex plane and suppose T, and T2 are distinct contraction mappings of

C -> C such that \\z - Tx(z)\\ = \\z - T2(z)|| for all z G C. (For example, let

Tx(z) = ze"i/2/2, T2(z) = ze"m/2/2.) Let

S = {z G C| |z| is rational}

and define T: C -+ C by

Í Tx (z)     if z G S,
T(z) =

w      \T2(z)    if z G S.

Clearly T is not continuous, yet tj(z) = \\z — T(z)\\ is continuous (because

■q(z) = \\z — Tx(z)\\). To see that T is a directional contraction, one only need

consider the case z, G S, z2 G S. As A ranges over (0, 1), \Xzx + (1 - X)z2\

must assume all intermediate values between |z,| and \z2\ and, in particular,
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for some point w = Xzx + (1 - X)z2, \w\ is rational. Hence

\T(z) - T(w)\ =\Tx(z) - Tx(w)\ <I|z, - z2|.

The case z, £ S and z2E S is similar.

3. By making obvious modifications in the definition and proof it is

possible to formulate Theorem 1 assuming only that D is a convex subset of a

normed linear space with T: D -» M a closed mapping of D into a complete

metric space M.

4. Caristi's theorem used in the proof of Theorem 3 is essentially equivalent

to a theorem of I. Ekeland [5] and an elegant proof is implicit in the ideas of

A. Brandsted [2].
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