C*-ALGEBRAS ISOMORPHIC AFTER TENSORING1

JOAN PLASTIRAS

ABSTRACT. It is always true that whenever $\mathfrak A$ and $\mathfrak B$ are isomorphic C^* -algebras then $\mathfrak M_2 \otimes \mathfrak A$ and $\mathfrak M_2 \otimes \mathfrak B$ are also isomorphic, and the converse holds for many standard examples. In this note we present two C^* -algebras $\mathfrak A$ and $\mathfrak B$ such that $\mathfrak M_2 \otimes \mathfrak A$ and $\mathfrak M_2 \otimes \mathfrak B$ are isomorphic whereas $\mathfrak A$ and $\mathfrak B$ are not

We remark that whenever $\mathfrak A$ and $\mathfrak B$ are isomorphic C^* -algebras then $\mathfrak M_n \otimes \mathfrak A$ and $\mathfrak M_n \otimes \mathfrak B$ are also isomorphic, $n=1,2,3,\ldots$; the converse is true for abelian C^* -algebras $\mathfrak A$ and $\mathfrak B$ because the center of $\mathfrak M_n \otimes \mathfrak A$ (respectively $\mathfrak M_n \otimes \mathfrak B$) is isomorphic to $\mathfrak A$ (respectively $\mathfrak B$). It follows also from the classification theory of [3] that if $\mathfrak A$ and $\mathfrak B$ are uniformly hyperfinite algebras such that $\mathfrak M_2 \otimes \mathfrak A$ and $\mathfrak M_2 \otimes \mathfrak B$ are isomorphic, then so are $\mathfrak A$ and $\mathfrak B$. Finally, if $\mathfrak A$ and $\mathfrak B$ are perturbed block diagonal algebras then one verifies easily by applying [4, Theorem 1] that $\mathfrak M_n \otimes \mathfrak A$ isomorphic to $\mathfrak M_n \otimes \mathfrak B$ implies that $\mathfrak A$ is isomorphic to $\mathfrak B$. The purpose of this note is to exhibit two C^* -algebras $\mathfrak A$ and $\mathfrak B$ such that $\mathfrak M_2 \otimes \mathfrak A$ is isomorphic to $\mathfrak M_2 \otimes \mathfrak B$ but $\mathfrak A$ is not isomorphic to $\mathfrak B$.

In what follows, $\mathcal{L}(\mathfrak{R})$ (respectively $\mathcal{C}(\mathfrak{R})$) shall denote the algebra of bounded (respectively compact) operators on a separable Hilbert space \mathfrak{R} . By the essential commutant of a set $S \subseteq \mathcal{L}(\mathfrak{R})$, denoted E.C. (S), we shall mean the set of $T \in \mathcal{L}(\mathfrak{R})$ such that $TS - ST \in \mathcal{C}(\mathfrak{R})$ for every $S \in S$. A 2×2 system of matrix units for a C^* -algebra S with identity I is defined to be a set $\{e_{ij}\}_{1 \leq i,j \leq 2}$ of elements of S such that $e_{ij}e_{km} = \delta_{jk}e_{im}$, $e_{ij}^* = e_{ji}$, and $e_{11} + e_{22} = I$. Finally, the natural projection of S onto the Calkin algebra S will be written S. Let

$$\mathfrak{A} = \big\{ T \oplus T \colon T \in \mathfrak{L}(\mathfrak{K}) \big\} + \mathcal{C}(\mathfrak{K} \oplus \mathfrak{K}),$$

$$\mathfrak{B} = \big\{ 0 \oplus T \oplus T \colon T \in \mathfrak{L}(\mathfrak{K}), \, 0 \in \mathfrak{L}(\mathfrak{K}) \big\} + \mathcal{C}(\mathfrak{K} \oplus \mathfrak{K} \oplus \mathfrak{K}),$$

where \Re , the first coordinate space, is one dimensional.

To show that $\mathfrak A$ and $\mathfrak B$ are not isomorphic, we rely on the fact that two C^* -algebras of $\mathfrak L(\mathfrak K)$ which contain $\mathcal L(\mathfrak K)$ are isomorphic if and only if they

Received by the editors October 29, 1976.

AMS (MOS) subject classifications (1970). Primary 46L05, 47C10; Secondary 47B05, 47A55, 47A65.

Key words and phrases. C*-algebra, isomorphism, compact operators, essential commutant, matrix units, Hilbert space.

¹This work was partially supported by NSF contract #MCS 75-06482 A01.

are unitarily equivalent, denoted by \approx [1, Theorem 1.3.4; Corollary 3, p. 20]. We note that because a unitary equivalence of two C^* -algebras induces a unitary equivalence of their essential commutants, to prove $\mathfrak A$ and $\mathfrak B$ are not isomorphic, it suffices to prove that E.C. ($\mathfrak A$) and E.C. ($\mathfrak B$) are not.

It is easy to verify that:

$$E.C. (\mathfrak{A}) = \left\{ \begin{pmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{pmatrix} : \lambda_{ij} \in \mathbf{C} \right\} + \mathcal{C}(\mathfrak{K} \oplus \mathfrak{K}),$$

$$E.C. (\mathfrak{B}) = \left\{ 0 \oplus \begin{pmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{pmatrix} : \lambda_{ij} \in \mathbf{C} \right\} + \mathcal{C}(\mathfrak{K} \oplus \mathfrak{K} \oplus \mathfrak{K}),$$

where ${\mathfrak K}$ and ${\mathfrak K}$ are as before and C denotes the set of complex numbers.

In [2] it is shown that any 2×2 system of matrix units in $\pi(E.C.(\mathfrak{A}))$ is the image of a 2×2 system of matrix units in E.C. (\mathfrak{A}) whereas no 2×2 system of matrix units in $\pi(E.C.(\mathfrak{B}))$ is, thus yielding the desired conclusion.

It remains only to show that $\mathfrak{M}_2 \otimes \mathfrak{A}$ and $\mathfrak{M}_2 \otimes \mathfrak{B}$ are isomorphic. In fact, we remark that slight modifications of our argument will show that $\mathfrak{M}_n \otimes \mathfrak{A}$ and $\mathfrak{M}_n \otimes \mathfrak{B}$ are isomorphic if and only if n is even—although we do not need this here. An observation which we isolate to summon repeatedly is that $\mathfrak{M}_n \otimes \mathfrak{L}(\mathfrak{K})$ (respectively $\mathfrak{M}_n \otimes \mathfrak{L}(\mathfrak{K})$) is isomorphic to $\mathfrak{L}(\mathfrak{K})$ (respectively $\mathfrak{L}(\mathfrak{K})$) whenever \mathfrak{K} is an infinite dimensional Hilbert space.

So, we concretely represent $\mathfrak{M}_2 \otimes \mathfrak{B}$ as

$$+ \ \mathcal{C}((\mathfrak{K} \oplus \mathfrak{K} \oplus \mathfrak{K}) \oplus (\mathfrak{K} \oplus \mathfrak{K} \oplus \mathfrak{K}))$$

which is unitarily equivalent to

(2)
$$\begin{cases} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \oplus \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix} \oplus \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix} : T_{ij} \in \mathcal{L}(\mathcal{K}) \\ + \mathcal{C}((\mathcal{K} \oplus \mathcal{K}) \oplus (\mathcal{K} \oplus \mathcal{K}) \oplus (\mathcal{K} \oplus \mathcal{K}))$$

by permuting the coordinate spaces. By employing the observation above, we realize (2) as unitarily equivalent to

(3)
$$\{(0 \oplus T) \oplus (0 \oplus T) \colon 0 \in \mathcal{L}(\mathcal{K}), T \in \mathcal{L}(\mathcal{K}')\} + \mathcal{L}(\mathcal{K} \oplus \mathcal{K}' \oplus \mathcal{K} \oplus \mathcal{K}'),$$

where \mathcal{H}' is identified with $\mathcal{H} \oplus \mathcal{H}$.

Because dim $(\mathfrak{R}) < \infty$ and our algebra contains all of the compact operators on the underlying space, (3) is equal to

$$\{S \oplus S \colon S \in \mathcal{L}(\mathcal{K} \oplus \mathcal{K}')\} + \mathcal{C}((\mathcal{K} \oplus \mathcal{K}') \oplus (\mathcal{K} \oplus \mathcal{K}')),$$

which by the observation mentioned above is unitarily equivalent to

(5)
$$\left\{ \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix} \oplus \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix} : T_{ij} \in \mathcal{E}(\mathcal{K}) \right\} + \mathcal{C}((\mathcal{K} \oplus \mathcal{K}) \oplus (\mathcal{K} \oplus \mathcal{K})).$$

By interchanging the second and third coordinate spaces, we recognize (5) as

$$\begin{cases}
\begin{pmatrix} T_{11} & 0 & T_{12} & 0 \\ 0 & T_{11} & 0 & T_{12} \\ T_{21} & 0 & T_{22} & 0 \\ 0 & T_{21} & 0 & T_{22} \end{pmatrix} : T_{ij} \in \mathcal{E}(\mathcal{K}) \\
+ \mathcal{C}((\mathcal{K} \oplus \mathcal{K}) \oplus (\mathcal{K} \oplus \mathcal{K}))$$

which is the concrete representation of $\mathfrak{M}_2 \otimes \mathfrak{A}$. \square

REFERENCES

- 1. W. Arveson, An invitation to C*-algebras, Springer-Verlag, Berlin and New York, 1976.
- 2. H. Behncke and H. Leptin, C*-algebras with a two-point dual, J. Functional Analysis 10 (1972), 330-335.
- 3. J. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318-340.
- 4. J. Plastiras, Compact perturbations of certain von Neumann algebras, Trans. Amer. Math. Soc. (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PENNSYLVANIA 19174

Current address: Systems Study, 8326, Sandia Laboratories, Livermore, California 94550